How is the aromaticity of benzene affected by nitrogen substitution? Are pyridine and pyrimidine more or less aromatic than benzene? This question has been addressed many times, and Schleyer adds to this discussion with a B3LYP/6-311+G** study of the entire series of azines.1 Analysis of the aromaticity is based on a two metrics: NICS(0)πzz and extra cyclic resonance energy (ECRE). The NICS(0) πzz value is now the ring current measurement advocated by Schleyer as it only includes the π orbitals and uses the tensor component perpendicular to the ring. ECRE is obtained by comparing block-localized energies of the azine to appropriate acyclic references.

Interestingly, both metrics give the same result, namely, that the aromaticity of benzene and all of the azines 1-6 are essentially equally aromatic.

References

(1) Wang, Y.; Wu, J. I. C.; Li, Q.; Schleyer, P. v. R., "Aromaticity and Relative Stabilities of Azines," Org. Lett., 2010, 12, 4824-4827, DOI: 10.1021/ol102012d

InChIs

1: InChI=1/C5H5N/c1-2-4-6-5-3-1/h1-5H
InChIKey=JUJWROOIHBZHMG-UHFFFAOYAY

2a: InChI=1/C4H4N2/c1-2-4-6-5-3-1/h1-4H
InChIKey=PBMFSQRYOILNGV-UHFFFAOYAA

2b: InChI=1/C4H4N2/c1-2-5-4-6-3-1/h1-4H
InChIKey=CZPWVGJYEJSRLH-UHFFFAOYAT

2c: InChI=1/C4H4N2/c1-2-6-4-3-5-1/h1-4H
InChIKey=KYQCOXFCLRTKLS-UHFFFAOYAV

3a: InChI=1/C3H3N3/c1-2-4-6-5-3-1/h1-3H
InChIKey=JYEUMXHLPRZUAT-UHFFFAOYAF

3b: InChI=1/C3H3N3/c1-2-5-6-3-4-1/h1-3H
InChIKey=FYADHXFMURLYQI-UHFFFAOYAY

3c: InChI=1/C3H3N3/c1-4-2-6-3-5-1/h1-3H
InChIKey=JIHQDMXYYFUGFV-UHFFFAOYAG

4a: InChI=1/C2H2N4/c1-2-4-6-5-3-1/h1-2H
InChIKey=DPOPAJRDYZGTIR-UHFFFAOYAI

4b: InChI=1/C2H2N4/c1-3-2-5-6-4-1/h1-2H
InChIKey=ZFXBERJDEUDDMX-UHFFFAOYAH

4c: InChI=1/C2H2N4/c1-3-5-2-6-4-1/h1-2H
InChIKey=HTJMXYRLEDBSLT-UHFFFAOYAH

5: InChI=1/CHN5/c1-2-4-6-5-3-1/h1H
InChIKey=ALAGDBVXZZADSN-UHFFFAOYAQ

6: InChI=1/N6/c1-2-4-6-5-3-1
InChIKey=YRBKSJIXFZPPGF-UHFFFAOYAK