The α-proton of ketones and aldehydes are acidic, thanks to delocalization of the resulting anion. However, α-protons at a bridgehead position are much less acidic – the resulting anion is not delocalized as the enolate would be an anti-Bredt alkene. So, what about more remote protons from the carbonyl – would they exhibit enhanced acidity due to inductive or field effects?

Kass has examined the deprotonation of 2-adamantone 1 via experiment and computation.1 The relative energies of the five different anions are listed in Table 1. Previous H/D exchange experiments indicate that the relative reactivity is βax > βeq > α, and this is well reproduced by computations.2

Table 1. Relative energies (kcal mol-1) of the enolates of 1.


compound

M06-2x/aug-cc-pVDZ

G3


α

4.27

5.60

βax

0.0

0.0

βeq

4.46

 

γ

2.28

3.40

δ

6.17

7.55

2

-1.58

0.56


Kass’ bracketing experiments indicate the enthalpy for deptrotonation of 2-adamantone is 394.7 ± 1.4 kcal mol-1. This is in nice accord with the computational results for loss of the βax proton: 393.8 (M06-2x/aug-cc-pVDZ) and 396.8 kcla mol-1 (G3). One interesting computational result is a competive cyclic structure 2, whose stability is similar to that to the βax ion at M06-2x and is the optimized structure produced at MP2/6-31G(d) when searching for the βeq enolate.

So, to answer our question, protons remote from a carbonyl are more acidic than alkane
analogues, but much less acidic than typical α-protons of ketones.

References

(1) Meyer, M. M.; Kass, S. R., "Enolates in 3-D: An Experimental and Computational Study of Deprotonated 2-Adamantanone," J. Org. Chem., 2010, 75, 4274-4279, DOI: 10.1021/jo100953y

(2) Stothers, J. B.; Tan, C. T., "Adamantanone: stereochemistry of its homoenolization as shown by 2H nuclear magnetic resonance," J. Chem. Soc., Chem. Commun., 1974, 738-739, DOI: 10.1039/C39740000738

InChI

1: InChI=1/C10H14O/c11-10-8-2-6-1-7(4-8)5-9(10)3-6/h6-9H,1-5H2
InChIKey=IYKFYARMMIESOX-UHFFFAOYAE

2: InChI=1/C10H13O/c11-10-7-2-5-1-6(4-7)9(10)8(10)3-5/h5-9H,1-4H2/q-1
InChIKey=WTXOXRNASCZDME-UHFFFAOYAE