About the Book
Citations
Molecules
Chapter 7 Citations
- Carey, F. A. Organic Chemistry; 5th ed.; McGraw-Hill: Boston, 2003.
- Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; 8th ed.; John Wiley & Sons: Hoboken, NJ,
2004.
- Houston, P. L. Chemical Kinetics and Reaction Dynamics; McGraw-Hill: Boston, MA, 2001.
- Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall:
UpperSaddle River, NJ, 1999.
- Bolton, K.; Hase, W. L.; Peshlerbe, G. H. In Modern
Methods for Multidimensional Dynamics Computations in Chemistry; Thompson,
D. L., Ed.; World Scientific: Singapore, 1998, p 143-189.
- Peslherbe, G. H.; Wang, H.; Hase, W. L., "Monte Carlo Sampling for Classical
Trajectory Simulations.," Adv. Chem. Phys., 1999, 105, 171-201.
- Sun, L.; Hase, W. L.,
"Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations," Rev. Comput. Chem.
2003, 19, 79-146, DOI: 10.1002/0471466638.ch3.
- Carpenter, B. K. In Reactive Intermediate Chemistry; Moss,
R. A., Platz, M. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, NJ, 2004, p 925-960.
- Carpenter, B. K., "Nonstatistical Dynamics In Thermal
Reactions Of Polyatomic Molecules," Annu. Rev. Phys. Chem., 2005, 46, 57-89, DOI: 10.1146/annurev.physchem.56.092503.141240.
- Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling,
W. T. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1986.
- Helgaker, T.; Uggerud, E.;
Aa. Jensen, H. J., "Integration of the Classical
Equations of Motion on ab Initio Molecular Potential
Energy Surfaces using Gradients and Hessians: Application to Translational
Energy Release Upon Fragmentation," Chem. Phys. Lett., 1990, 173, 145-150, DOI: 10.1016/0009-2614(90)80068-O.
- Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel,
H. B., "Ab Initio Classical Trajectories on the
Born�Oppenheimer Surface: Hessian-Based Integrators using Fifth-Order
Polynomial and Rational Function Fits," J. Chem. Phys., 1999, 111, 3800-3805, DOI: 10.1063/1.480037.
- Bakken, V.; Millam, J. M.; Schlegel, H. B., "Ab Initio Classical Trajectories on the
Born�Oppenheimer Surface: Updating Methods for Hessian-Based Integrators," J. Chem. Phys.,
1999, 111, 8773-8777, DOI: 10.1063/1.480224.
- Gonzalez-Lafont, A.; Truong, T. N.; Truhlar, D. G., "Direct
Dynamics Calculations with Neglect of Diatomic Differential Overlap Molecular
Orbital Theory with Specific Reaction Parameters," J. Phys. Chem., 1991, 95, 4618-4627,
DOI: 10.1021/j100165a009.
- Hase, W. L.; Buckowski, D. G., "Monte Carlo Sampling of a
Microcanonical Ensemble of Classical Harmonic Oscillators," Chem. Phys. Lett., 1980,
74, 284-287, DOI: 10.1016/0009-2614(80)85159-1.
- Carroll, F. A. Perspectives on Structure and Mechanism in
Organic Chemistry; Brooks/Cole Publishing Co.: Pacific Grove, CA, 1998.
- Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic
Chemistry; 3rd ed.; Harper and Row: New York, 1987.
- Kassel, L. S., "The Dynamics of Unimolecular Reactions," Chem. Rev., 1932, 10,
11-25, DOI: 10.1021/cr60035a002.
- Marcus, R. A., "Lifetimes of Active Molecules. I," J. Chem. Phys., 1952,
20, 352-354, DOI: 10.1063/1.1700422
- Marcus, R. A., "Lifetimes of Active Molecules. II," J. Chem.
Phys., 1952, 20, 355-359 DOI: 10.1063/1.1700423
- Rice, O. K.; Ramsperger, H. C., "Theories of Unimolecular
Gas Reactions at Low Pressures," J. Am. Chem. Soc., 1927, 49, 1617-1629, DOI: 10.1021/ja01406a001.
- Evans, M. G.; Polanyi, M.,
"Some Applications of the Transition State Method to the Calculation of
Reaction Velocities, Especially in Solution," Trans. Faraday Soc., 1935,
875-894, DOI: 10.1039/TF9353100875
- Eyring, H., "The Activated Complex in Chemical Reactions," J. Chem. Phys., 1935,
3, 107-115, DOI: 10.1063/1.1749604.
- Truhlar, D. G.; Garrett, B. C., "Variational Transition
State Theory," Annu. Rev. Phys. Chem., 1984, 35, 159-189, DOI: 10.1146/annurev.pc.35.100184.001111.
- Carpenter, B. K., "Dynamic Matching: The Cause of Inversion of Configuration in the [1
,3] Sigmatropic Migration?," J. Am. Chem. Soc., 1995, 117, 6336-6344, DOI: 10.1021/ja00128a024.
- Carpenter, B. K., "Bimodal Distribution of Lifetimes for an Intermediate from a
Quasiclassical Dynamics Simulation," J. Am. Chem. Soc., 1996, 118, 10329-10330,
DOI: 10.1021/ja9617707.
- Berson, J. A.; Nelson, G. L., "Inversion of Configuration in the Migrating Group
of a Thermal 1,3-Sigmatropic Rearrangement," J. Am. Chem. Soc., 1967, 89, 5503-5504,
DOI: 10.1021/ja00997a065.
- Baldwin, J. E.; Belfield, K. D., "Stereochemistry of the Thermal Isomerization
of Bicyclo[3.2.0]hept-2-ene to Bicyclo[2.2.1]hept-2-ene," J. Am. Chem. Soc., 1988, 110,
296-297, DOI: 10.1021/ja00209a051.
- Kl�rner, F. G.; Drewes, R.; Hasselmann, D., "Stereochemistry of the Thermal Rearrangement of
Bicyclo[3.2.0]hept-2-ene to bicyclo[2.2.1]hept-2-ene (Norbornene). [1,3] Carbon Migration with Predominant
Inversion," J. Am. Chem. Soc., 1988, 110, 297-298, DOI:
10.1021/ja00209a052.
- Berson, J. A.; Nelson, G. L., "Steric Prohibition of the Inversion Pathway. Test
of the Orbital Symmetry Prediction of the Sense of Rotation in Thermal
Suprafacial 1,3-Sigmatropic Rearrangements," J. Am. Chem. Soc.
1970, 92, 1096-1097, DOI: 10.1021/ja00707a078.
- Carpenter, B. K., "Dynamic Behavior of Organic Reactive Intermediates," Angew. Chem. Int.
Ed., 1998, 37, 3340-3350, DOI: 10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1.
- Hoffmann, R.; Swaminathan, S.; Odell, B. G.; Gleiter, R., "Potential Surface for a Nonconcerted
Reaction. Tetramethylene," J. Am. Chem. Soc., 1970, 92, 7091-7097, DOI: 10.1021/ja00727a013.
- Doering, W. v. E.; Sachdev, K., "Continuous Diradical as Transition State. Internal Rotational
Preference in the Thermal Enantiomerization and Diastereoisomerization of cis- and
trans-1-cyano-2-isopropenylcyclopropane,"J. Am. Chem. Soc., 1974, 96, 1168-1187,
DOI: 10.1021/ja00811a034.
- Doering, W. v. E.; Cheng, X.; Lee, K.; Lin, Z., "Fate of the Intermediate
Diradicals in the Caldera: Stereochemistry of Thermal Stereomutations, (2 + 2) Cycloreversions, and (2 + 4)
Ring-Enlargements of cis-and trans-1-Cyano-2-(E, and Z)-propenyl-cis-3
,4-dideuteriocyclobutanes," J. Am. Chem. Soc., 2002, 124, 11642-11652, DOI: http://dx.doi.org/10.1021/ja0206083.
- Home Ground, Language for an American Landscape; Lopez, B., Ed.; Trinity University Press: San Antonio, TX, 2006.
- Baldwin, J. E.; Villarica, K. A.; Freedberg, D.
I.; Anet, F. A. L., "Stereochemistry of the Thermal Isomerization of Vinylcyclopropane
to Cyclopentene," J. Am. Chem. Soc, 1994, 116, 10845-10846, DOI: 10.1021/ja00102a084.
- Gajewski, J. J.; Olson, L. P.; Willcott, M. R., "Evidence
for Concert in the Thermal Unimolecular Vinylcyclopropane to Cyclopentene
Sigmatropic 1,3-Shift," J. Am. Chem. Soc., 1996, 118, 299-306, DOI: 10.1021/ja951578p.
- Davidson, E. R.; Gajewski, J. J., "Calculational Evidence for Lack of Intermediates in the Thermal
Unimolecular Vinylcyclopropane to Cyclopentene 1,3-Sigmatropic Shift," J. Am. Chem. Soc.,
1997, 119, 10543-10544, DOI: 10.1021/ja9711932.
- Houk, K. N.; Nendel, M.; Wiest, O.; Storer, J. W., "The Vinylcyclopropane-Cyclopentene
Rearrangement: A Prototype Thermal Rearrangement Involving Competing Diradical
Concerted and Stepwise Mechanisms," J. Am. Chem. Soc., 1997, 119, 10545-10546, DOI: 10.1021/ja971315q.
- Doubleday, C.; Nendel, M.; Houk, K. N.; Thweatt,
D.; Page, M., "Direct Dynamics Quasiclassical
Trajectory Study of the Stereochemistry of the Vinylcyclopropane-Cyclopentene
Rearrangement," J. Am. Chem. Soc., 1999, 121, 4720-4721, DOI: 10.1021/ja984083j.
- Doubleday, C., "Mechanism of the Vinylcyclopropane-Cyclopentene
Rearrangement Studied by Quasiclassical Direct
Dynamics," J. Phys. Chem. A, , 2001, 105, 6333-6341, DOI: 10.1021/jp010464z.
- Berson, J. A.; Dervan, P. B., "Mechanistic Analysis of the Four Pathways in the 1,3-Sigmatropic
Rearrangements of trans-1,2-trans, trans- and
trans-1,2-cis,trans-Dipropenylcyclobutane," , 1973,
95, 269-270, DOI: 10.1021/ja00782a062.
- Northrop, B. H.; Houk, K. N., "Vinylcyclobutane-Cyclohexene Rearrangement:
Theoretical Exploration of Mechanism and Relationship to the Diels-Alder
Potential Surface," J. Org. Chem., 2006, 71, 3-13, DOI: 10.1021/jo051273l.
- Doubleday, C.; Suhrada, C. P.; Houk, K. N., "Dynamics of the Degenerate Rearrangement of
Bicyclo [3.1.0]hex-2-ene," J. Am. Chem. Soc., 2006, 128, 90-94, DOI: 10.1021/ja050722w.
- Baldwin, J. E.; Keliher, E. J., "Activation Parameters for Three
Reactions Interconverting Isomeric 4- and 6-Deuteriobicyclo[3.1.0]hex-2-enes," J. Am. Chem. Soc.,
2002, 124, 380-381, DOI: 10.1021/ja012258a.
- Suhrada, C. P.; Houk, K. N., "Potential Surface for the Quadruply
Degenerate Rearrangement of Bicyclo[3.1.0]hex-2-ene," J.
Am. Chem. Soc., 2002, 124, 8796-8797, DOI: 10.1021/ja020601l.
- Berson, J. A.; Pedersen, L. D., "Thermal Stereomutation of Optically Active
trans-Cyclopropane-1,2-d2," J. Am. Chem. Soc., 1975, 97,
238-240, DOI: 10.1021/ja00834a069.
- Cianciosi, S. J.; Ragunathan, N.; Freedman, T. B.; Nafie, L. A.; Lewis, D. K.; Glenar,
D. A.; Baldwin, J. E., "Racemization and Geometrical Isomerization of (2,3S)-Cyclopropane-1-13C-1,2,3-d3 at 407 �C: Kinetically
Competitive One-Center and Two-Center Thermal Epimerizations in an Isotopically Substituted Cyclopropane,"
J. Am. Chem. Soc., 1991, 113, 1864-1866, DOI:
10.1021/ja00005a079.
- Hoffmann, R., " Trimethylene and the Addition of Methylene
to Ethylene," J. Am. Chem. Soc., 1968, 90, 1475-1485, DOI: 10.1021/ja01008a016.
- Doubleday, C., "Lifetime of Trimethylene Calculated by Variational Unimolecular Rate
Theory," J. Phys. Chem., 1996, 100, 3520-3526, DOI: 10.1021/jp9528471.
- Hrovat, D. A.; Fang, S.; Borden, W. T.; Carpenter, B. K., "Investigation of
Cyclopropane Stereomutation by Quasiclassical Trajectories on an Analytical Potential Energy
Surface," J. Am. Chem. Soc., 1997, 119, 5253-5254, DOI: 10.1021/ja964238s.
- Doubleday, C., Jr.; Bolton, K.; Hase, W. L., "Direct Dynamics Study of the Stereomutation
of Cyclopropane," J. Am. Chem. Soc., 1997, 119, 5251-5252, DOI: 10.1021/ja964250k.
- Doubleday, C.; Bolton, K.; Hase, W. L., "Direct Dynamics Quasiclassical
Trajectory Study of the Thermal Stereomutations of Cyclopropane," J.
Phys. Chem. A, 1998, 102, 3648-3658, DOI: 10.1021/jp973273y.
- Roth, W. R.; Martin, M., "Stereochemistry of the Thermal and Photochemical Decomposition of 2
,3-Diazabicyclo[2.2.1]hept-2-ene," Justus Liebigs Ann. Chem., 1967, 702, 1-7.
- Roth, W. R.; Martin, M., "Zur Stereochemie der 1.2-Cycloaddition an das
Bicyclo[2.1.0]system," Tetrahedron Lett., 1967, 8, 4695-4698, DOI: 10.1016/S0040-4039(01)89583-6.
- Allred, E. L.; Smith, R. L., "Thermolysis of exo- and
endo-5-Methoxy-2,3-diazabicyclo[2.2.1]-2-heptene," J. Am. Chem. Soc., 1967, 89,
7133-7134, DOI: 10.1021/ja01002a063.
- Sorescu, D. C.; Thompson, D. L.; Raff, L. M., "Molecular Dynamics Studies of the
Thermal Decomposition of 2,3-Diazabicyclo(2.2.1)hept-2-ene,"
J. Chem. Phys., 1995, 102, 7911-7924, DOI: 10.1063/1.468990.
- Yamamoto, N.; Olivucci, M.; Celani, P.; Bernardi, F.; Robb, M. A., "An MC-SCF/MP2 Study of the
Photochemistry of 2,3-Diazabicyclo[2.2.1]hept-2-ene: Production and Fate of Diazenyl and
Hydrazonyl Biradicals," J. Am. Chem. Soc., 1998, 120, 2391-2407, DOI: http://dx.doi.org/10.1021/ja971733v.
- Reyes, M. B.; Carpenter, B. K., "Mechanism of Thermal Deazetization of 2
,3-Diazabicyclo[2.2.1]hept-2-ene and Its Reaction Dynamics in Supercritical Fluids," J. Am.
Chem. Soc., 2000, 122, 10163-10176, DOI: 10.1021/ja0016809.
- Osterheld, T. H.; Brauman, J. I., "Infrared Multiple-Photon
Dissociation of the Acetone Enol Radical Cation. Dependence of Nonstatistical
Dissociation on Internal Energy," J. Am. Chem. Soc., 1993, 115, 10311 - 10316, DOI: 10.1021/ja00075a054.
- McLafferty, F. W.; McAdoo, D. J.; Smith, J. S.; Kornfeld, R.,
"Metastable Ions Characteristics. XVIII. Enolic C3H6O+ Ion Formed
from Aliphatic Ketones," J. Am. Chem. Soc., 1971, 93, 3720 - 3730, DOI: 10.1021/ja00744a028.
- Depke, G.; Lifshitz, C.; Schwarz, H.; Tzidony, E., "Non-Ergodic Behavior of Excited Radical
Cations in the Gas Phase," Angew. Chem., Int. Ed. Engl., 1981,
20, 792-793, DOI: 10.1002/anie.198107921.
- Turecek, F.; McLafferty, F. W., "Non-ergodic
Behavior in Acetone-Enol Ion Dissociations," J. Am. Chem. Soc., 1984, 106, 2525-2528
, DOI: 10.1021/ja00321a006.
- Lifshitz, C., "Intramolecular Energy Redistribution in
Polyatomic Ions," J. Phys. Chem., 1983, 87, 2304-2313, DOI: 10.1021/j100236a015.
- Nummela, J. A.; Carpenter, B. K., "Nonstatistical Dynamics in Deep Potential Wells: A Quasiclassical
Trajectory Study of Methyl Loss from the Acetone Radical Cation,"
J. Am. Chem. Soc., 2002, 124, 8512-8513, DOI: 10.1021/ja026230q.
- Roth, W. R.; Wollweber, D.; Offerhaus, R.; Rekowski, V.; Lennartz, H. W.;
Sustmann, R.; M�ller, W., "The Energy Well of Diradicals. IV. 2-Methylene-1,4-cyclohexanediyl,"
Chem. Ber., 1993, 126, 2701-2715.
- Hrovat, D. A.; Duncan, J. A.; Borden, W. T., "Ab Initio and DFT Calculations on the Cope
Rearrangement of 1,2,6-Heptatriene," J. Am. Chem. Soc., 1999, 121, 169-175,
DOI: 10.1021/ja983032j.
- Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W.
T., "The Iconoclastic Dynamics of the 1,2,6-Heptatriene Rearrangement," J. Am. Chem. Soc.,
2002, 124, 7896-7897, DOI: 10.1021/ja026232a.
- McIver, J. W., Jr.; Stanton, R. E., "Symmetry Selection Rules for Transition States,"
J. Am. Chem. Soc., 1972, 94, 8618-8620, DOI:
10.1021/ja00779a075.
- Sun, L.; Song, K.; Hase, W. L., "A SN2 Reaction That Avoids Its Deep Potential Energy
Minimum," Science, 2002, 296, 875-878, DOI: 10.1126/science.1068053.
- Schmittel, M.; Strittmatter, M.; Kiau, S., "Switching from the Myers Reaction to a New ThermalCyclization Mode
in Enyne-allenes," Tetrahedron Lett., 1995, 36, 4975-4978, DOI:
10.1016/0040-4039(95)00937-8.
- Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter,
M., "A Suprising Switch from the Myers-Saito Cyclization toa Novel Biradical
Cyclization in Enyne-Allenes: Formal Diels-Alder and Ene Reactions with High Synthetic Potential,"
Chem. Eur. J., 1997, 3, 807-816.
- Musch, P. W.; Engels, B., "The Importance of the Ene
Reaction for the C2-C6 Cyclization of Enyne-Allenes,"
J. Am. Chem. Soc., 2001, 123, 5557-5562, DOI: 10.1021/ja010346p.
- Bekele, T.; Christian, C. F.; Lipton, M. A.; Singleton, D. A., ""Concerted" Transition
State, Stepwise Mechanism. Dynamics Effects in C2-C6 Enyne Allene Cyclizations,"
J. Am. Chem. Soc., 2005, 127, 9216-9223, DOI:
10.1021/ja0508673.
- Achmatowicz, O., Jr.; Szymoniak, J., "Mechanism of the Dimethyl Mesoxalate-Alkene
Ene Reaction. Deuterium Kinetic Isotope Effects," J. Org. Chem., 1980, 45, 4774-4776,
DOI: 10.1021/jo01311a046.
- Song, Z.; Beak, P., "Investigation of the mechanisms of ene reactions of carbonyl enophiles by
intermolecular and intramolecular hydrogen-deuterium isotope effects:
partitioning of reaction intermediates," J. Am. Chem. Soc., 1990, 112, 8126-8134,
DOI: 10.1021/ja00178a042.
- Ghosez, L.; Montaigne, R.; Roussel, A.; Vanlierde,
H.; Mollet, P., "Cycloadditions of Dichloroketene to Olefins and Dienes,"
Tetrahedron Lett., 1971, 27, 615-633, DOI: 10.1016/S0040-4020(01)90730-6.
- Machiguchi, T.; Hasegawa, T.; Ishiwata, A.; Terashima,
S.; Yamabe, S.; Minato, T., "Ketene Recognizes 1,3-Dienes in Their s-Cis Forms
through [4 + 2] (Diels-Alder) and [2 + 2] (Staudinger) Reactions. An Innovation
of Ketene Chemistry," J. Am. Chem. Soc., 1999, 121, 4771-4786, DOI: 10.1021/ja990072u.
- Ussing, B. R.; Hang, C.; Singleton, D. A., "Dynamic Effects on the
Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene,"
J. Am. Chem. Soc., 2006, 128, 7594-7607, DOI: 10.1021/ja0606024.
- Ammal, S. C.; Yamataka, H.; Aida, M.; Dupuis, M., "Dynamics-Driven Reaction Pathway in an
Intramolecular Rearrangement," Science, 2003, 299, 1555-1557, DOI: 10.1126/science.1079491.