Chapter 7 Citations

  1. Carey, F. A. Organic Chemistry; 5th ed.; McGraw-Hill: Boston, 2003.
  2. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; 8th ed.; John Wiley & Sons: Hoboken, NJ, 2004.
  3. Houston, P. L. Chemical Kinetics and Reaction Dynamics; McGraw-Hill: Boston, MA, 2001.
  4. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall: UpperSaddle River, NJ, 1999.
  5. Bolton, K.; Hase, W. L.; Peshlerbe, G. H. In Modern Methods for Multidimensional Dynamics Computations in Chemistry; Thompson, D. L., Ed.; World Scientific: Singapore, 1998, p 143-189.
  6. Peslherbe, G. H.; Wang, H.; Hase, W. L., "Monte Carlo Sampling for Classical Trajectory Simulations.," Adv. Chem. Phys., 1999, 105, 171-201.
  7. Sun, L.; Hase, W. L., "Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations," Rev. Comput. Chem. 2003, 19, 79-146, DOI: 10.1002/0471466638.ch3.
  8. Carpenter, B. K. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, NJ, 2004, p 925-960.
  9. Carpenter, B. K., "Nonstatistical Dynamics In Thermal Reactions Of Polyatomic Molecules," Annu. Rev. Phys. Chem., 2005, 46, 57-89, DOI: 10.1146/annurev.physchem.56.092503.141240.
  10. Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1986.
  11. Helgaker, T.; Uggerud, E.; Aa. Jensen, H. J., "Integration of the Classical Equations of Motion on ab Initio Molecular Potential Energy Surfaces using Gradients and Hessians: Application to Translational Energy Release Upon Fragmentation," Chem. Phys. Lett., 1990, 173, 145-150, DOI: 10.1016/0009-2614(90)80068-O.
  12. Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B., "Ab Initio Classical Trajectories on the Born�Oppenheimer Surface: Hessian-Based Integrators using Fifth-Order Polynomial and Rational Function Fits," J. Chem. Phys., 1999, 111, 3800-3805, DOI: 10.1063/1.480037.
  13. Bakken, V.; Millam, J. M.; Schlegel, H. B., "Ab Initio Classical Trajectories on the Born�Oppenheimer Surface: Updating Methods for Hessian-Based Integrators," J. Chem. Phys., 1999, 111, 8773-8777, DOI: 10.1063/1.480224.
  14. Gonzalez-Lafont, A.; Truong, T. N.; Truhlar, D. G., "Direct Dynamics Calculations with Neglect of Diatomic Differential Overlap Molecular Orbital Theory with Specific Reaction Parameters," J. Phys. Chem., 1991, 95, 4618-4627, DOI: 10.1021/j100165a009.
  15. Hase, W. L.; Buckowski, D. G., "Monte Carlo Sampling of a Microcanonical Ensemble of Classical Harmonic Oscillators," Chem. Phys. Lett., 1980, 74, 284-287, DOI: 10.1016/0009-2614(80)85159-1.
  16. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole Publishing Co.: Pacific Grove, CA, 1998.
  17. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; 3rd ed.; Harper and Row: New York, 1987.
  18. Kassel, L. S., "The Dynamics of Unimolecular Reactions," Chem. Rev., 1932, 10, 11-25, DOI: 10.1021/cr60035a002.
  19. Marcus, R. A., "Lifetimes of Active Molecules. I," J. Chem. Phys., 1952, 20, 352-354, DOI: 10.1063/1.1700422
  20. Marcus, R. A., "Lifetimes of Active Molecules. II," J. Chem. Phys., 1952, 20, 355-359 DOI: 10.1063/1.1700423
  21. Rice, O. K.; Ramsperger, H. C., "Theories of Unimolecular Gas Reactions at Low Pressures," J. Am. Chem. Soc., 1927, 49, 1617-1629, DOI: 10.1021/ja01406a001.
  22. Evans, M. G.; Polanyi, M., "Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution," Trans. Faraday Soc., 1935, 875-894, DOI: 10.1039/TF9353100875
  23. Eyring, H., "The Activated Complex in Chemical Reactions," J. Chem. Phys., 1935, 3, 107-115, DOI: 10.1063/1.1749604.
  24. Truhlar, D. G.; Garrett, B. C., "Variational Transition State Theory," Annu. Rev. Phys. Chem., 1984, 35, 159-189, DOI: 10.1146/annurev.pc.35.100184.001111.
  25. Carpenter, B. K., "Dynamic Matching: The Cause of Inversion of Configuration in the [1 ,3] Sigmatropic Migration?," J. Am. Chem. Soc., 1995, 117, 6336-6344, DOI: 10.1021/ja00128a024.
  26. Carpenter, B. K., "Bimodal Distribution of Lifetimes for an Intermediate from a Quasiclassical Dynamics Simulation," J. Am. Chem. Soc., 1996, 118, 10329-10330, DOI: 10.1021/ja9617707.
  27. Berson, J. A.; Nelson, G. L., "Inversion of Configuration in the Migrating Group of a Thermal 1,3-Sigmatropic Rearrangement," J. Am. Chem. Soc., 1967, 89, 5503-5504, DOI: 10.1021/ja00997a065.
  28. Baldwin, J. E.; Belfield, K. D., "Stereochemistry of the Thermal Isomerization of Bicyclo[3.2.0]hept-2-ene to Bicyclo[2.2.1]hept-2-ene," J. Am. Chem. Soc., 1988, 110, 296-297, DOI: 10.1021/ja00209a051.
  29. Kl�rner, F. G.; Drewes, R.; Hasselmann, D., "Stereochemistry of the Thermal Rearrangement of Bicyclo[3.2.0]hept-2-ene to bicyclo[2.2.1]hept-2-ene (Norbornene). [1,3] Carbon Migration with Predominant Inversion," J. Am. Chem. Soc., 1988, 110, 297-298, DOI: 10.1021/ja00209a052.
  30. Berson, J. A.; Nelson, G. L., "Steric Prohibition of the Inversion Pathway. Test of the Orbital Symmetry Prediction of the Sense of Rotation in Thermal Suprafacial 1,3-Sigmatropic Rearrangements," J. Am. Chem. Soc. 1970, 92, 1096-1097, DOI: 10.1021/ja00707a078.
  31. Carpenter, B. K., "Dynamic Behavior of Organic Reactive Intermediates," Angew. Chem. Int. Ed., 1998, 37, 3340-3350, DOI: 10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1.
  32. Hoffmann, R.; Swaminathan, S.; Odell, B. G.; Gleiter, R., "Potential Surface for a Nonconcerted Reaction. Tetramethylene," J. Am. Chem. Soc., 1970, 92, 7091-7097, DOI: 10.1021/ja00727a013.
  33. Doering, W. v. E.; Sachdev, K., "Continuous Diradical as Transition State. Internal Rotational Preference in the Thermal Enantiomerization and Diastereoisomerization of cis- and trans-1-cyano-2-isopropenylcyclopropane,"J. Am. Chem. Soc., 1974, 96, 1168-1187, DOI: 10.1021/ja00811a034.
  34. Doering, W. v. E.; Cheng, X.; Lee, K.; Lin, Z., "Fate of the Intermediate Diradicals in the Caldera: Stereochemistry of Thermal Stereomutations, (2 + 2) Cycloreversions, and (2 + 4) Ring-Enlargements of cis-and trans-1-Cyano-2-(E, and Z)-propenyl-cis-3 ,4-dideuteriocyclobutanes," J. Am. Chem. Soc., 2002, 124, 11642-11652, DOI:
  35. Home Ground, Language for an American Landscape; Lopez, B., Ed.; Trinity University Press: San Antonio, TX, 2006.
  36. Baldwin, J. E.; Villarica, K. A.; Freedberg, D. I.; Anet, F. A. L., "Stereochemistry of the Thermal Isomerization of Vinylcyclopropane to Cyclopentene," J. Am. Chem. Soc, 1994, 116, 10845-10846, DOI: 10.1021/ja00102a084.
  37. Gajewski, J. J.; Olson, L. P.; Willcott, M. R., "Evidence for Concert in the Thermal Unimolecular Vinylcyclopropane to Cyclopentene Sigmatropic 1,3-Shift," J. Am. Chem. Soc., 1996, 118, 299-306, DOI: 10.1021/ja951578p.
  38. Davidson, E. R.; Gajewski, J. J., "Calculational Evidence for Lack of Intermediates in the Thermal Unimolecular Vinylcyclopropane to Cyclopentene 1,3-Sigmatropic Shift," J. Am. Chem. Soc., 1997, 119, 10543-10544, DOI: 10.1021/ja9711932.
  39. Houk, K. N.; Nendel, M.; Wiest, O.; Storer, J. W., "The Vinylcyclopropane-Cyclopentene Rearrangement: A Prototype Thermal Rearrangement Involving Competing Diradical Concerted and Stepwise Mechanisms," J. Am. Chem. Soc., 1997, 119, 10545-10546, DOI: 10.1021/ja971315q.
  40. Doubleday, C.; Nendel, M.; Houk, K. N.; Thweatt, D.; Page, M., "Direct Dynamics Quasiclassical Trajectory Study of the Stereochemistry of the Vinylcyclopropane-Cyclopentene Rearrangement," J. Am. Chem. Soc., 1999, 121, 4720-4721, DOI: 10.1021/ja984083j.
  41. Doubleday, C., "Mechanism of the Vinylcyclopropane-Cyclopentene Rearrangement Studied by Quasiclassical Direct Dynamics," J. Phys. Chem. A, , 2001, 105, 6333-6341, DOI: 10.1021/jp010464z.
  42. Berson, J. A.; Dervan, P. B., "Mechanistic Analysis of the Four Pathways in the 1,3-Sigmatropic Rearrangements of trans-1,2-trans, trans- and trans-1,2-cis,trans-Dipropenylcyclobutane," , 1973, 95, 269-270, DOI: 10.1021/ja00782a062.
  43. Northrop, B. H.; Houk, K. N., "Vinylcyclobutane-Cyclohexene Rearrangement: Theoretical Exploration of Mechanism and Relationship to the Diels-Alder Potential Surface," J. Org. Chem., 2006, 71, 3-13, DOI: 10.1021/jo051273l.
  44. Doubleday, C.; Suhrada, C. P.; Houk, K. N., "Dynamics of the Degenerate Rearrangement of Bicyclo [3.1.0]hex-2-ene," J. Am. Chem. Soc., 2006, 128, 90-94, DOI: 10.1021/ja050722w.
  45. Baldwin, J. E.; Keliher, E. J., "Activation Parameters for Three Reactions Interconverting Isomeric 4- and 6-Deuteriobicyclo[3.1.0]hex-2-enes," J. Am. Chem. Soc., 2002, 124, 380-381, DOI: 10.1021/ja012258a.
  46. Suhrada, C. P.; Houk, K. N., "Potential Surface for the Quadruply Degenerate Rearrangement of Bicyclo[3.1.0]hex-2-ene," J. Am. Chem. Soc., 2002, 124, 8796-8797, DOI: 10.1021/ja020601l.
  47. Berson, J. A.; Pedersen, L. D., "Thermal Stereomutation of Optically Active trans-Cyclopropane-1,2-d2," J. Am. Chem. Soc., 1975, 97, 238-240, DOI: 10.1021/ja00834a069.
  48. Cianciosi, S. J.; Ragunathan, N.; Freedman, T. B.; Nafie, L. A.; Lewis, D. K.; Glenar, D. A.; Baldwin, J. E., "Racemization and Geometrical Isomerization of (2,3S)-Cyclopropane-1-13C-1,2,3-d3 at 407 �C: Kinetically Competitive One-Center and Two-Center Thermal Epimerizations in an Isotopically Substituted Cyclopropane," J. Am. Chem. Soc., 1991, 113, 1864-1866, DOI: 10.1021/ja00005a079.
  49. Hoffmann, R., " Trimethylene and the Addition of Methylene to Ethylene," J. Am. Chem. Soc., 1968, 90, 1475-1485, DOI: 10.1021/ja01008a016.
  50. Doubleday, C., "Lifetime of Trimethylene Calculated by Variational Unimolecular Rate Theory," J. Phys. Chem., 1996, 100, 3520-3526, DOI: 10.1021/jp9528471.
  51. Hrovat, D. A.; Fang, S.; Borden, W. T.; Carpenter, B. K., "Investigation of Cyclopropane Stereomutation by Quasiclassical Trajectories on an Analytical Potential Energy Surface," J. Am. Chem. Soc., 1997, 119, 5253-5254, DOI: 10.1021/ja964238s.
  52. Doubleday, C., Jr.; Bolton, K.; Hase, W. L., "Direct Dynamics Study of the Stereomutation of Cyclopropane," J. Am. Chem. Soc., 1997, 119, 5251-5252, DOI: 10.1021/ja964250k.
  53. Doubleday, C.; Bolton, K.; Hase, W. L., "Direct Dynamics Quasiclassical Trajectory Study of the Thermal Stereomutations of Cyclopropane," J. Phys. Chem. A, 1998, 102, 3648-3658, DOI: 10.1021/jp973273y.
  54. Roth, W. R.; Martin, M., "Stereochemistry of the Thermal and Photochemical Decomposition of 2 ,3-Diazabicyclo[2.2.1]hept-2-ene," Justus Liebigs Ann. Chem., 1967, 702, 1-7.
  55. Roth, W. R.; Martin, M., "Zur Stereochemie der 1.2-Cycloaddition an das Bicyclo[2.1.0]system," Tetrahedron Lett., 1967, 8, 4695-4698, DOI: 10.1016/S0040-4039(01)89583-6.
  56. Allred, E. L.; Smith, R. L., "Thermolysis of exo- and endo-5-Methoxy-2,3-diazabicyclo[2.2.1]-2-heptene," J. Am. Chem. Soc., 1967, 89, 7133-7134, DOI: 10.1021/ja01002a063.
  57. Sorescu, D. C.; Thompson, D. L.; Raff, L. M., "Molecular Dynamics Studies of the Thermal Decomposition of 2,3-Diazabicyclo(2.2.1)hept-2-ene," J. Chem. Phys., 1995, 102, 7911-7924, DOI: 10.1063/1.468990.
  58. Yamamoto, N.; Olivucci, M.; Celani, P.; Bernardi, F.; Robb, M. A., "An MC-SCF/MP2 Study of the Photochemistry of 2,3-Diazabicyclo[2.2.1]hept-2-ene: Production and Fate of Diazenyl and Hydrazonyl Biradicals," J. Am. Chem. Soc., 1998, 120, 2391-2407, DOI:
  59. Reyes, M. B.; Carpenter, B. K., "Mechanism of Thermal Deazetization of 2 ,3-Diazabicyclo[2.2.1]hept-2-ene and Its Reaction Dynamics in Supercritical Fluids," J. Am. Chem. Soc., 2000, 122, 10163-10176, DOI: 10.1021/ja0016809.
  60. Osterheld, T. H.; Brauman, J. I., "Infrared Multiple-Photon Dissociation of the Acetone Enol Radical Cation. Dependence of Nonstatistical Dissociation on Internal Energy," J. Am. Chem. Soc., 1993, 115, 10311 - 10316, DOI: 10.1021/ja00075a054.
  61. McLafferty, F. W.; McAdoo, D. J.; Smith, J. S.; Kornfeld, R., "Metastable Ions Characteristics. XVIII. Enolic C3H6O+ Ion Formed from Aliphatic Ketones," J. Am. Chem. Soc., 1971, 93, 3720 - 3730, DOI: 10.1021/ja00744a028.
  62. Depke, G.; Lifshitz, C.; Schwarz, H.; Tzidony, E., "Non-Ergodic Behavior of Excited Radical Cations in the Gas Phase," Angew. Chem., Int. Ed. Engl., 1981, 20, 792-793, DOI: 10.1002/anie.198107921.
  63. Turecek, F.; McLafferty, F. W., "Non-ergodic Behavior in Acetone-Enol Ion Dissociations," J. Am. Chem. Soc., 1984, 106, 2525-2528 , DOI: 10.1021/ja00321a006.
  64. Lifshitz, C., "Intramolecular Energy Redistribution in Polyatomic Ions," J. Phys. Chem., 1983, 87, 2304-2313, DOI: 10.1021/j100236a015.
  65. Nummela, J. A.; Carpenter, B. K., "Nonstatistical Dynamics in Deep Potential Wells: A Quasiclassical Trajectory Study of Methyl Loss from the Acetone Radical Cation," J. Am. Chem. Soc., 2002, 124, 8512-8513, DOI: 10.1021/ja026230q.
  66. Roth, W. R.; Wollweber, D.; Offerhaus, R.; Rekowski, V.; Lennartz, H. W.; Sustmann, R.; M�ller, W., "The Energy Well of Diradicals. IV. 2-Methylene-1,4-cyclohexanediyl," Chem. Ber., 1993, 126, 2701-2715.
  67. Hrovat, D. A.; Duncan, J. A.; Borden, W. T., "Ab Initio and DFT Calculations on the Cope Rearrangement of 1,2,6-Heptatriene," J. Am. Chem. Soc., 1999, 121, 169-175, DOI: 10.1021/ja983032j.
  68. Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T., "The Iconoclastic Dynamics of the 1,2,6-Heptatriene Rearrangement," J. Am. Chem. Soc., 2002, 124, 7896-7897, DOI: 10.1021/ja026232a.
  69. McIver, J. W., Jr.; Stanton, R. E., "Symmetry Selection Rules for Transition States," J. Am. Chem. Soc., 1972, 94, 8618-8620, DOI: 10.1021/ja00779a075.
  70. Sun, L.; Song, K.; Hase, W. L., "A SN2 Reaction That Avoids Its Deep Potential Energy Minimum," Science, 2002, 296, 875-878, DOI: 10.1126/science.1068053.
  71. Schmittel, M.; Strittmatter, M.; Kiau, S., "Switching from the Myers Reaction to a New ThermalCyclization Mode in Enyne-allenes," Tetrahedron Lett., 1995, 36, 4975-4978, DOI: 10.1016/0040-4039(95)00937-8.
  72. Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M., "A Suprising Switch from the Myers-Saito Cyclization toa Novel Biradical Cyclization in Enyne-Allenes: Formal Diels-Alder and Ene Reactions with High Synthetic Potential," Chem. Eur. J., 1997, 3, 807-816.
  73. Musch, P. W.; Engels, B., "The Importance of the Ene Reaction for the C2-C6 Cyclization of Enyne-Allenes," J. Am. Chem. Soc., 2001, 123, 5557-5562, DOI: 10.1021/ja010346p.
  74. Bekele, T.; Christian, C. F.; Lipton, M. A.; Singleton, D. A., ""Concerted" Transition State, Stepwise Mechanism. Dynamics Effects in C2-C6 Enyne Allene Cyclizations," J. Am. Chem. Soc., 2005, 127, 9216-9223, DOI: 10.1021/ja0508673.
  75. Achmatowicz, O., Jr.; Szymoniak, J., "Mechanism of the Dimethyl Mesoxalate-Alkene Ene Reaction. Deuterium Kinetic Isotope Effects," J. Org. Chem., 1980, 45, 4774-4776, DOI: 10.1021/jo01311a046.
  76. Song, Z.; Beak, P., "Investigation of the mechanisms of ene reactions of carbonyl enophiles by intermolecular and intramolecular hydrogen-deuterium isotope effects: partitioning of reaction intermediates," J. Am. Chem. Soc., 1990, 112, 8126-8134, DOI: 10.1021/ja00178a042.
  77. Ghosez, L.; Montaigne, R.; Roussel, A.; Vanlierde, H.; Mollet, P., "Cycloadditions of Dichloroketene to Olefins and Dienes," Tetrahedron Lett., 1971, 27, 615-633, DOI: 10.1016/S0040-4020(01)90730-6.
  78. Machiguchi, T.; Hasegawa, T.; Ishiwata, A.; Terashima, S.; Yamabe, S.; Minato, T., "Ketene Recognizes 1,3-Dienes in Their s-Cis Forms through [4 + 2] (Diels-Alder) and [2 + 2] (Staudinger) Reactions. An Innovation of Ketene Chemistry," J. Am. Chem. Soc., 1999, 121, 4771-4786, DOI: 10.1021/ja990072u.
  79. Ussing, B. R.; Hang, C.; Singleton, D. A., "Dynamic Effects on the Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene," J. Am. Chem. Soc., 2006, 128, 7594-7607, DOI: 10.1021/ja0606024.
  80. Ammal, S. C.; Yamataka, H.; Aida, M.; Dupuis, M., "Dynamics-Driven Reaction Pathway in an Intramolecular Rearrangement," Science, 2003, 299, 1555-1557, DOI: 10.1126/science.1079491.