Chapter 5 Citations

  1. Moylan, C. R.; Brauman, J. I. In Advances in Classical Trajectory Methods; Hase, W., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 2, p 95-114.
  2. Chabinyc, M. L.; Craig, S. L.; Regan, C. K.; Brauman, J. I., "Gas-Phase Ionic Reactions: Dynamics and Mechanism of Nucleophilic Displacements," Science, 1998, 279, 1882-1886, DOI: 10.1126/science.279.5358.1882.
  3. Dedieu, A.; Veillard, A., "Comparative Study of Some SN2 Reactions through ab Initio Calculations," , 1972, 94, 6730-6738, DOI: 10.1021/ja00774a028.
  4. Keil, F.; Ahlrichs, R., "Theoretical Study of SN2 Reactions. Ab initio Computations on HF and CI Level," J. Am. Chem. Soc., 1976, 98, 4787-4793, DOI: 10.1021/ja00432a017.
  5. Wolfe, S.; Mitchell, D. J.; Schlegel, H. B., "Theoretical Studies of SN2 Transition States. 1. Geometries," J. Am. Chem. Soc., 1981, 103, 7692-7694, DOI: 10.1021/ja00415a068.
  6. Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L., "SN2 Reaction Profiles in the Gas Phase and Aqueous Solution," J. Am. Chem. Soc., 1984, 106, 3049-3050, DOI: 10.1021/ja00322a059.
  7. Shi, Z.; Boyd, R. J., "An ab initio Study of Model SN2 Reactions with Inclusion of Electron Correlation Effects through Second-Order Moeller-Plesset Perturbation Calculations," J. Am. Chem. Soc., 1990, 112, 6789-6796, DOI: 10.1021/ja00175a008.
  8. Wolfe, S.; Kim, C.-K., "Secondary H/D Isotope Effects in Methyl-Transfer Reactions Decrease with Increasing Looseness of the Transition Structure," J. Am. Chem. Soc., 1991, 113, 8056-8061, DOI: 10.1021/ja00021a035.
  9. Wladkowski, B. D.; Allen, W. D.; Brauman, J. I., "The SN2 Identity Exchange Reaction F- + CH3F .fwdarw. FCH3 + F-: Definitive ab Initio Predictions," J. Phys. Chem., 1994, 98, 13532-13540, DOI: 10.1021/j100102a018.
  10. Gonzales, J. M.; Cox, R. S., III; Brown, S. T.; Allen, W. D.; Schaefer, H. F., III, "Assessment of Density Functional Theory for Model SN2 Reactions: CH3X + F- (X = F, Cl, CN, OH, SH, NH2, PH2)," J. Phys. Chem. A., 2001, 105, 11327-11346, DOI: 10.1021/jp012892a.
  11. Streitwieser, A.; Choy, G. S.-C.; Abu-Hasanayn, F., "Theoretical Study of Ion Pair SN2 Reactions: Ethyl vs Methyl Reactivities and Extension to Higher Alkyls," J. Am. Chem. Soc., 1997, 119, 5013-5019, DOI: 10.1021/ja961673d.
  12. Parthiban, S.; de Oliveira, G.; Martin, J. M. L., "Benchmark ab Initio Energy Profiles for the Gas-Phase SN2 Reactions Y- + CH3X -> CH3Y + X- (X,Y = F,Cl,Br). Validation of Hybrid DFT Methods," J. Phys. Chem. A., 2001, 105, 895-904, DOI: 10.1021/jp0031000.
  13. Glukhovtsev, M. N.; Pross, A.; Radom, L., "Gas-Phase Identity SN2 Reactions of Halide Anions with Methyl Halides: A High-Level Computational Study," J. Am. Chem. Soc., 1995, 117, 2024-2032, DOI: 10.1021/ja00112a016.
  14. Gonzales, J. M.; Pak, C.; Cox, R. S.; Allen, W. D.; Schaefer, H. F. I.; Cs�sz�r, A. G.; Tarczay, G., "Definitive Ab Initio Studies of Model SN2 Reactions CH3X+F- (X=F, Cl, CN, OH, SH, NH2, PH2)," Chem. Eur. J., 2003, 9, 2173-2192, DOI: 10.1002/chem.200204408.
  15. Tucker, S. C.; Truhlar, D. G., "Ab Initio Calculations of the Transition-State Geometry and Vibrational Frequencies of the SN2 Reaction of Cl- with CH3Cl," J. Phys. Chem., 1989, 93, 8138-8142, DOI: 10.1021/j100362a004.
  16. Glukhovtsev, M. N.; Bach, R. D.; Pross, A.; Radom, L., "The Performance of B3-LYP Density Functional Theory in Describing SN2 Reactions at Saturated Carbon," Chem. Phys. Lett., 1996, 260, 558-564, DOI: 10.1016/0009-2614(96)00923-2.
  17. Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B., "High-Pressure Mass Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase SN2 Reactions," J. Am. Chem. Soc., 1996, 118, 9360-9367, DOI: 10.1021/ja960565o.
  18. Wladkowski, B. D.; Brauman, J. I., "Application of Marcus Theory to Gas-Phase SN2 Reactions: Experimental Support of the Marcus Theory Additivity Postulate," J. Phys. Chem., 1993, 97, 13158-13164, DOI: 10.1021/j100152a021.
  19. Caldwell, G.; Magnera, T. F.; Kebarle, P., "SN2 reactions in the gas phase. Temperature dependence of the rate constants and energies of the transition states. Comparison with solution," J. Am. Chem. Soc., 1984, 106, 959-966, DOI: 10.1021/ja00316a023.
  20. Knighton, W. B.; Bognar, J. A.; O'Connor, P. M.; Grimsrud, E. P., "Gas-phase SN2 reactions of chloride ion with alkyl bromides at atmospheric pressure. Temperature dependence of the rate constants and energies of the transition states," J. Am. Chem. Soc., 1993, 115, 12079-12084, DOI: 10.1021/ja00078a053.
  21. Olmstead, W. N.; Brauman, J. I., "Gas-Phase Nucleophilic Displacement Reactions," J. Am. Chem. Soc., 1977, 99, 4219-4228, DOI: 10.1021/ja00455a002.
  22. Pellerite, M. J.; Brauman, J. I., "Intrinsic Barriers in Nucleophilic Displacements. A General Model for Intrinsic Nucleophilicity Toward Methyl Centers," J. Am. Chem. Soc., 1983, 105, 2672-2680, DOI: 10.1021/ja00347a026.
  23. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole Publishing Co.: Pacific Grove, CA, 1998.
  24. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; 3rd ed.; Harper and Row: New York, 1987.
  25. DePuy, C. H.; Gronert, S.; Mullin, A.; Bierbaum, V. M., "Gas-Phase SN2 and E2 Reactions of Alkyl Halides," J. Am. Chem. Soc., 1990, 112, 8650-8655, DOI: 10.1021/ja00180a003.
  26. Regan, C. K.; Craig, S. L.; Brauman, J. I., "Steric Effects and Solvent Effects in Ionic Reactions," Science, 2002, 295, 2245-2247, DOI: 10.1126/science.1068849.
  27. Jensen, F., "A Theoretical Study of Steric Effects in SN2 Reactions," Chem. Phys. Lett., 1992, 196, 368-376, DOI: 10.1016/0009-2614(92)85984-I.
  28. Gronert, S., "Theoretical Studies of Elimination Reactions. 3. Gas-Phase Reactions of Fluoride Ion with (CH3)2CHCl and CH3CH2CH2Cl. The Effect of Methyl Substituents," J. Am. Chem. Soc., 1993, 115, 652-659, DOI: 10.1021/ja00055a039.
  29. (Vayner, G.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I., "Steric Retardation of SN2 Reactions in the Gas Phase and Solution," J. Am. Chem. Soc., 2004, 126, 9054-9058, DOI: 10.1021/ja049070m.
  30. Glukhovtsev, M. N.; Pross, A.; Schlegel, H. B.; Bach, R. D.; Radom, L., " Gas-Phase Identity SN2 Reactions of Halide Anions and Methyl Halides with Retention of Configuration," J. Am. Chem. Soc., 1996, 118, 1258-11264, DOI: 10.1021/ja9620191.
  31. Sauers, R. R., "Inversion vs Retention of Configuration in Gas-Phase Ammonium Ion/Alcohol Reactions," J. Org. Chem., 2002, 67, 1221-1226, DOI: 10.1021/jo016267d.
  32. Despeyroux, D.; Cole, R. B.; Tabet, J. C., "Ion-Molecule Reactions in the Gas Phase. XVIII. Nucleophilic Substitution of Diastereomeric Norborneols, Norbornyl Acetates and Benzoates under Ammonia Chemical Ionization," Org. Mass Spectrom., 1992, 27, 300-308, DOI: 10.1002/oms.1210270323.
  33. Helmick, J. S.; Martin, K. A.; Heinrich, J. L.; Novak, M., "Mechanism of the reaction of carbon and nitrogen nucleophiles with the model carcinogens O-N-arylhydroxylamines: competing SN2 substitution and SN1 solvolysis," J. Am. Chem. Soc., 1991, 113, 3459-3466, DOI: 10.1021/ja00009a035.
  34. Ulbrich, R.; Famulok, M.; Bosold, F.; Boche, G., "SN2 at nitrogen: the reaction of N-(4-cyanophenyl)-O-(diphenylphosphinoyl)hydroxylamine with N-methylaniline. A model for the reactions of ultimate carcinogens of aromatic amines with (bio)nucleophiles," Tetrahedron Lett., 1990, 31, 1689-1692, DOI: 10.1016/S0040-4039(00)88855-3.
  35. Singer, B.; Kusmierek, J. T., "Chemical Mutagenesis," Ann. Rev. Biochem. 1982, 51, 655-693, DOI: 10.1146/annurev.bi.51.070182.003255.
  36. Noiva, R.; Lennarz, W. J., "Protein Disulfide Isomerase," J. Biol. Chem., 1992, 267, 3553-3556, http://www.jbc.org/cgi/reprint/267/6/3553.
  37. Perham, R. N., "Domains, Motifs, and Linkers in 2-oxo Acid Dehydrogenase Multienzyme Complexes: a Paradigm in the Design of a Multifunctional Protein," Biochemistry 1991, 30, 8501-8512, DOI: 10.1021/bi00099a001.
  38. Nicolaou, K. C.; Dai, W.-M., "Chemistry and Biology of the Enediyne Anticancer Antibiotics," Angew. Chem. Int. Ed. Engl., 1991, 30, 1387-1416, DOI: 10.1002/anie.199113873.
  39. Spallholz, J. E.; Martin, J. L.; Ganther, H. E. Selenium in Biology and Medicine; AVI Publishing: Westport, CT, 1981.
  40. Shamberger, R. J. Biochemistry of Selenium; Plenum: New York, 1983.
  41. B�hl, M.; Schaefer, H. F., III, "SN2 Reaction at Neutral Nitrogen: Transition State Geometries and Intrinsic Barriers.," J. Am. Chem. Soc., 1993, 115, 9143-9147, DOI: 10.1021/ja00073a033.
  42. Yi, R.; Basch, H.; Hoz, S., "The Periodic Table and the Intrinsic Barrier in SN2 Reactions," J. Org. Chem., 2002, 67, 5891-5895, DOI: 10.1021/jo020325t.
  43. Glukhovtsev, M. N.; Pross, A.; Radom, L., "Gas-Phase Identity SN2 Reactions of Halide Ions at Neutral Nitrogen: A High-Level Computational Study," J. Am. Chem. Soc., 1995, 117, 9012-9018, DOI: 10.1021/ja00140a018.
  44. Gareyev, R.; Kato, S.; Bierbaum, V. M., "Gas Phase Reactions of NH2Cl with Anionic Nucleophiles: Nucleophilic Substitution at Neutral Nitrogen," J. Am. Soc. Mass Spectrom., 2001, 12, 139-143, DOI: 10.1016/S1044-0305(00)00210-5.
  45. Yang, J.; Ren, Y.; Zhu, J.-J.; Chu, S.-Y., "Gas-phase Non-Identity SN2 Reactions at Neutral Nitrogen: a Hybrid DFT Study," Int. J. Mass. Spectrom., 2003, 229, 199-208, DOI: 10.1016/S1387-3806(03)00308-7.
  46. Bachrach, S. M., "Nucleophilic Substitution at Oxygen: the Reaction of PH3 and NH3 with H3NO. An ab Initio Investigation," J. Org. Chem., 1990, 55, 1016-1019, DOI: 10.1021/jo00290a037.
  47. Ren, Y.; Wolk, J. L.; Hoz, S., "Hybrid DFT study on the gas-phase SN2 reactions at neutral oxygen," Int. J. Mass Spectrom., 2003, 225, 167-176, DOI: 10.1016/S1387-3806(02)01113-2.
  48. Pappas, J. A., "Theoretical Studies of the Reactions of the Sulfur-Sulfur Bond. 1. General Heterolytic Mechanisms," J. Am. Chem. Soc., 1977, 99, 2926-2930, DOI: 10.1021/ja00451a013.
  49. Aida, M.; Nagata, C., "An Ab Initio MO Study on the Thiol-Disulfide Exchange Reaction," Chem. Phys. Lett., 1984, 112, 129-132, DOI: 10.1016/0009-2614(84)85006-X.
  50. Bachrach, S. M.; Mulhearn, D. C., "Nucleophilic Substitution at Sulfur: SN2 or Addition-Elimination?," J. Phys. Chem., 1996, 100, 3535-3540, DOI: 10.1021/jp953335p.
  51. Mulhearn,D. C.; Bachrach, S. M., "Selective Nucleophilic Attack of Trisulfides. An Ab Initio Study," J. Am. Chem. Soc., 1996, 118, 9415-9421, DOI: 10.1021/ja9620090.
  52. Bachrach, S. M.; Hayes, J. M.; Dao, T.; Mynar, J. L., "Density Functional Theory Gas- and Solution-Phase Study of Nucleophilic Substitution at Di- and Trisulfides," Theor. Chem. Acc., 2002, 107, 266-271, DOI: 10.1007/s00214-002-0323-4.
  53. Myers, A. G.; Cohen, S. B.; Kwon, B. M., "A Study of the Reaction of Calicheamicin γ1 with Glutathione in the Presence of Double-Stranded DNA," J. Am. Chem. Soc., 1994, 116, 1255-1271, DOI: 10.1021/ja00083a012.
  54. Bachrach, S. M.; Gailbreath, B. D., "Theoretical Study of Nucleophilic Substitution at Two-Coordinate Sulfur," J. Org. Chem., 2001, 66, 2005-2010, DOI: 10.1021/jo001463q.
  55. Bachrach, S. M.; Woody, J. T.; Mulhearn, D. C., "Effect of Ring Strain on the Thiolate-Disulfide Exchange. A Computational Study," J. Org. Chem., 2002, 67, 8983-8990, DOI: 10.1021/jo026223k.
  56. Breydo, L.; Gates, K. S., " Activation of Leinamycin by Thiols: A Theoretical Study," J. Org. Chem., 2002, 67, 9054-9060, DOI: 10.1021/jo020568l.
  57. Bachrach, S. M.; Chamberlin, A. C., "Theoretical Study of Nucleophilic Substitution at the Disulfide Bridge of Cyclo-L-cystine," J. Org. Chem., 2003, 68, 4743-4747, DOI: 10.1021/jo034046x.
  58. Norton, S. H.; Bachrach, S. M.; Hayes, J. M., "Theoretical Study of Nucleophilic Substitution at Sulfur in Sulfinyl Derivatives," J. Org. Chem., 2005, 70, DOI: /10.1021/jo050581g.
  59. Gailbreath, B. D.; Pommerening, C. A.; Bachrach, S. M.; Sunderlin, L. S., "The Potential Energy Surface of SCl3-," J. Phys. Chem. A, 2000, 104, 2958-2961, DOI: 10.1021/jp993671w.
  60. Damrauer, R.; Burggraf, L. W.; Davis, L. P.; Gordon, M. S., "Gas-Phase and Computational Studies of Pentacoordinate Silicon," J. Am. Chem. Soc., 1988, 110, 6601-6606, DOI: 10.1021/ja00228a001.
  61. Deiters, J. A.; Holmes, R. R.; Holmes, J. M., "Fluorine and Chlorine Apicophilicities in Five-Coordinated Phosphorus and Silicon Compounds via Molecular Orbital Calculations. A Model for Nucleophilic Substitution.," J. Am. Chem. Soc., 1988, 110, 7672-7681, DOI: 10.1021/ja00231a015.
  62. Gronert, S.; Glaser, R.; Streitwieser, A., "Charge Transfers and Polarizations in Bonds to Silicon. Organosilanes and the SN2(Si) Reaction of Silane with Fluoride. An ab Initio Study.," J. Am. Chem. Soc., 1989, 111, 3111-3117, DOI: 10.1021/ja00191a001.
  63. Bachrach, S. M.; Mulhearn, D. C., "Theoretical Studies of Nucleophilic Substitution at Phosphorus. PH3 + H- -> H- + PH3," J. Phys. Chem., 1993, 97, 12229-12231, DOI: 10.1021/j100149a022.
  64. S�lling, T. I.; Pross, A.; Radom, L., "A High-Level ab Initio Investigation of Identity and Nonidentity Gas-Phase SN2 Reactions of Halide Ions with Halophosphines," Int. J. Mass Spectrom., 2001, 210/211, 1-11, DOI: 10.1016/S1387-3806(01)00426-2.
  65. Bachrach, S. M.; Demoin, D. W.; Luk, M.; Miller, J. V., Jr., "Nucleophilic Attack at Selenium in Diselenides and Selenosulfides. A Computational Study," J. Phys. Chem. A, 2004, 108, 4040-4046, DOI: 10.1021/jp037972o.
  66. Tanaka, K.; Mackay, G. I.; Payzant, J. D.; Bohme, D. K., "Gas-phase Reactions of Anions with Halogenated Methanes at 297 � 2 K," Can. J. Chem., 1976, 54, 1643-1659, DOI: 10.1139/v76-234.
  67. Bohme, D. K.; Raksit, A. B., "Gas-phase measurements of the influence of stepwise solvation on the kinetics of nucleophilic displacement reactions with chloromethane and bromomethane at room temperature," J. Am. Chem. Soc., 1984, 106, 3447-3452, DOI: 10.1021/ja00324a011.
  68. Viggiano, A. A.; Arnold, S. T.; Morris, R. A.; Ahrens, A. F.; Hierl, P. M., "Temperature Dependences of the Rate Constants and Branching Ratios for the Reactions of OH-(H2O)0-4 + CH3Br," J. Phys. Chem., 1996, 100, 14397-14402, 10.1021/jp961250y.
  69. Seeley, J. V.; Morris, R. A.; Viggiano, A. A., "Temperature Dependences of the Rate Constants and Branching Ratios for the Reactions of F-(H2O)0-5 with CH3Br," , 1997, 101, 4598-4601, DOI: 10.1021/jp970492a.
  70. Jorgensen, W. L.; Chandrasekhar, J.; Madura,, D. M.; Impey, J. W.; Klein, M. L., "Comparison of Simple Potential Functions for Simulating Liquid Water," J. Chem. Phys., 1983, 79, 926-935, DOI: 10.1063/1.445869.
  71. McLennan, D. J., "Semiempirical Calculation of Rates of SN2 Finkelstein Reactions in Solution by a Quasi-Thermodynamic Cycle," Aust. J. Chem., 1978, 31, 1897-1909.
  72. Cossi, M.; C., A.; Barone, V., "Solvent Effects on an SN2 Reaction Profile," Chem. Phys. Lett., 1998, 297, 1-7, DOI: 10.1016/S0009-2614(98)01091-4.
  73. Mohamed, A. A.; Jensen, F., " Steric Effects in SN2 Reactions. The Influence of Microsolvation," J. Phys. Chem. A., 2001, 105, 3259-3268<, DOI: 10.1021/jp002802m.
  74. Hughes, E. D.; Ingold, C. K.; Mackie, J. D. H., "Mechanism of Substitution at a Saturated Carbon Atom. XLIII. Kinetics of the Interaction of Chloride Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc., 1955, 3173-3177, DOI: 10.1039/jr9550003173.
  75. De la Mare, P. B. D., "Mechanism of Substitution at a Saturated Carbon Atom. XLV. Kinetics of the Interaction of Bromide Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc., 1955, 3180-3187, DOI: 10.1039/jr9550003180.
  76. Morokuma, K., "Potential Energy Surface of the SN2 Reaction in Hydrated Clusters," J. Am. Chem. Soc., 1982, 104, 3732-3733, DOI: 10.1021/ja00377a037.
  77. Hayes, J. M.; Bachrach, S. M., " Effect of Micro and Bulk Solvation on the Mechanism of Nucleophilic Substitution at Sulfur in Disulfides," J. Phys. Chem. A, 2003, 107, 7952-7961, DOI: 10.1021/jp035407f.
  78. Cram, D. J.; Kopecky, K. R., "Studies in Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction," J. Am. Chem. Soc., 1959, 81, 2748 - 2755, DOI: 10.1021/ja01520a036.
  79. Karabatsos, G. J., "Asymmetric Induction. A Model for Additions to Carbonyls Directly Bonded to Asymmetric Carbons," J. Am. Chem. Soc., 1967, 89, 1367 - 1371, DOI: 10.1021/ja00982a015.
  80. Ch�rest, M.; Felkin, H.; Prudent, N., "Torsional strain involving partial bonds. The stereochemistry of the lithium aluminium hydride reduction of some simple open-chain ketones," Tetrahedron Lett., 1968, 9, 2199-2204, DOI: 10.1016/S0040-4039(00)89719-1.
  81. Anh, N. T.; Eistenstein, O., "Theoretical Interpretation of 1-2 Asymmetric Induction - Importance of Antiperiplanarity," Nouv. J. Chim., 1977, 1, 61-70.
  82. Lodge, E. P.; Heathcock, C. H., "Acyclic Stereoselection. 40. Steric Effects, as Well as σ*-Orbital Energies, are Important in Diastereoface Differentiation in Additions to Chiral Aldehydes," J. Am. Chem. Soc., 1987, 109, 3353-3361, DOI: 10.1021/ja00245a027.
  83. Kaufmann, E.; Schleyer, P. v. R.; Houk, K. N.; Wu, Y.-D., "Ab Initio Mechanisms for the Addition of CH3Li, HLi, and Their Dimers to Formaldehyde," J. Am. Chem. Soc., 1985, 107, 5560-5562, DOI: 10.1021/ja00305a058.
  84. Wong, S. S.; Paddon-Row, M. N., "Theoretical Evidence in Support of the Anh�Eisenstein Electronic Model in Controlling π-Facial Stereoselectivity in Nucleophilic Additions to Carbonyl Compounds," J. Chem. Soc., Chem. Commun., 1990, 456 - 458, DOI: 10.1039/C39900000456.
  85. Gung, B. W., "Diastereofacial Selection in Nucleophilic Additions to Unsymmetrically Substituted Trigonal Carbons," Tetrahedron, 1996, 52, 5263-5301, DOI: 10.1016/0040-4020(95)01023-8.
  86. Houk, K. N., "Perspective on "Theoretical interpretation of 1-2 asymmetric induction. The importance of antiperiplanarity": Anh NT, Eisenstein O (1977) Nouv J Chim 1: 61-70," Theor. Chem. Acc., 2000, 103, 330 - 331, DOI: 10.1007/s002149900037.
  87. Cieplak, A. S., "Stereochemistry of Nucleophilic Addition to Cyclohexanone. The Importance of Two-Electron Stabilizing Interactions," J. Am. Chem. Soc., 1981, 103, 4540-4552 , DOI: 10.1021/ja00405a041.
  88. Cieplak, A. S.; Tait, B. D.; Johnson, C. R., "Reversal of π-Facial Diastereoselection upon Electronegative Substitution of the Substrate and the Reagent," J. Am. Chem. Soc., 1989, 111, 8447-8462, DOI: 10.1021/ja00204a018.
  89. Halterman, R. L.; McEvoy, M. A., "Diastereoselectivity in the Reduction of Sterically Unbiased 2,2-Diarylcyclopentanones," J. Am. Chem. Soc., 1990, 112, 6690-6695, DOI: 10.1021/ja00174a036.
  90. Kaselj, M.; Chung, W.-S.; le Noble, W. J., "Face Selection in Addition and Elimination in Sterically Unbiased Systems," Chem. Rev., 1999, 99, 1387-1414, DOI: 10.1021/cr980364y.
  91. Wu, Y. D.; Houk, K. N., "Electronic and Conformational Effects on π-Facial Stereoselectivity in Nucleophilic Additions to Carbonyl Compounds," J. Am. Chem. Soc., 1987, 908-910, DOI: 10.1021/ja00237a051.
  92. Adcock, W.; Abeywickrema, A. N., "Substituent Effects in the Bicyclo[2.2.2]octane Ring System. A Carbon-13 and Fluorine-19 Nuclear Magnetic Resonance Study of 4-Substituted Bicyclo [2.2.2]oct-1-yl Fluorides," J. Org. Chem., 1982, 47, 2957-2966, DOI: 10.1021/jo00136a029.
  93. Laube, T.; Ha, T. K., "Detection of Hyperconjugative Effects in Experimentally Determined Structures of Neutral Molecules," J. Am. Chem. Soc., 1988, 110, 5511-5517, DOI: /10.1021/ja00224a040.
  94. Rozeboom, M. D.; Houk, K. N., "Stereospecific Alkyl Group Effects on Amine Lone-pair Ionization Potentials: Photoelectron Spectra of Alkylpiperidines," J. Am. Chem. Soc., 1982, 104, 1189-1191, DOI: 10.1021/ja00369a006.
  95. Frenking, G.; Koehler, K. F.; Reetz, M. T., "The Origin of π-Facial Diastereofacial Selectivity in Addition Reactions to Cyclohexane-Based Systems," Angew. Chem., Int. Ed. Engl, 1991, 30, 1146-1149, DOI: 10.1002/anie.199111461.
  96. Frenking, G.; F., K. K.; Reetz, M. T., "On the Origin of π-Facial Diastereoselectivity in Nucleophilic Additions to Chiral Carbonyl Compounds. 2. Calculated Transition State Structures for the Addition of Nucleophiles to Propionaldehyde 1, Chloroacetyldehyde 2, and 2-Chloropropionaldehyde 3.," Tetrahedron, 1991, 47, 9005-9018, DOI: 10.1016/S0040-4020(01)86505-4.
  97. Wong, S. S.; Paddon-Row, M. N., "The importance of electrostatic effects in controlling π-facial stereoselectivity in nucleophilic additions to carbonyl compounds: an ab initio MO study of a prototype chelation model," J. Chem. Soc., Chem. Commun., 1991, 327-330, DOI: 10.1039/C39910000327.
  98. Wu, Y.-D.; Tucker, J. A.; Houk, K. N., "Stereoselectivities of nucleophilic additions to cyclohexanones substituted by polar groups. Experimental investigation of reductions of trans-decalones and theoretical studies of cyclohexanone reductions. The influence of remote electrostatic effects," J. Am. Chem. Soc., 1991, 113, 5018-5027, DOI: 10.1021/ja00013a042.
  99. Luibrand, R. T.; Taigounov, I. R.; Taigounov, A. A., "A Theoretical Study of the Reaction of Lithium Aluminum Hydride with Formaldehyde and Cyclohexanone," J. Org. Chem., 2001, 66, 7254-7262, DOI: 10.1021/jo005754a.
  100. Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N., "Electrostatic Control of the Stereochemistry of Nucleophilic Additions to Substituted 7-Norbornanones," J. Am. Chem. Soc., 1992, 114, 10638-10639, DOI: 10.1021/ja00052a071.
  101. Williams, L.; Paddon-Row, M. N., "Electrostatic and steric control of π-facial stereoselectivity in nucleophilic additions of LiH and MeLi to endo-5,6-disubstituted norbornen-7-ones: an ab initio MO study," J. Chem. Soc., Chem. Commun. 1994, 353-355, DOI: 10.1039/C39940000353.
  102. Fleming, I.; Hrovat, D. A.; Borden, W. T., "The Origin of Felkin�Anh Control from an Electropositive Substituent Adjacent to the Carbonyl Group," J. Chem. Soc., Perkin Trans. 2, 2001, 331-338, DOI: 10.1039/b008409n.
  103. Smith, R. J.; Trzoss, M.; B�hl, M.; Bienz, S., "The Cram Rule Revisited Once More - Revision of the Felkin-Anh Model," Eur. J. Org. Chem., 2002, 2770 - 2775, DOI: 10.1002/1099-0690(200208)2002:16<2770::AID-EJOC2770>3.0.CO;2-X.
  104. Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: Orlando, Fla, 1984; Vol. 3, p 111-212.
  105. Atkinson, R. S. Stereoselective Synthesis; Wiley: Chichester, UK, 1995.
  106. Machajewski, T. D.; Wong, C.-H., "The Catalytic Asymmetric Aldol Reaction," Angew. Chem. Int. Ed., 2000, 39, 1352 - 1375, DOI: 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J.
  107. Tanaka, F.; Barbas, C. F., III In Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 2004; Vol. 1, p 273-310.
  108. Hajos, Z. G.; Parrish, D. R., "Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry," J. Org. Chem., 1974, 39, 1615-1621, DOI: 10.1021/jo00925a003.
  109. Eder, U.; Sauer, G.; Wiechert, R., "New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures," Angew. Chem. Int. Ed. Engl., 1971, 10, 496-497, DOI: 10.1002/anie.197104961.
  110. Agami,C.; Platzer, N.; Sevestre, H., "Enantioselective Cyclizations of Acyclic 1,5-Diketones," Bul. Soc. Chim. Fr., 1987, 2, 358-360.
  111. List, B., "Proline-Catalyzed Asymmetric Reactions," Tetrahedron, 2002, 58, 5573-5590, DOI: 10.1016/S0040-4020(02)00516-1.
  112. List, B., " Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of Carbanion Equivalents," Acc. Chem. Res., 2004, 37, 548-557 , DOI: 10.1021/ar0300571.
  113. Notz, W.; Tanaka, F.; Barbas, C. F., III, " Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels-Alder Reactions," Acc. Chem. Res., 2004, 37, 580-591, DOI: 10.1021/ar0300468.
  114. Northrup, A. B.; MacMillan, D. W. C., "The First General Enantioselective Catalytic Diels-Alder Reaction with Simple α,β-Unsaturated Ketones," J. Am. Chem. Soc., 2002, 124, 2458-2460, DOI: 10.1021/ja017641u.
  115. Paras, N. A.; MacMillan, D. W. C., "The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to α,β-Unsaturated Aldehydes," J. Am. Chem. Soc., 2002, 124, 7894-7895, DOI: 10.1021/ja025981p.
  116. Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C., "The First Enantioselective Organocatalytic Mukaiyama-Michael Reaction: A Direct Method for the Synthesis of Enantioenriched -Butenolide Architecture," J. Am. Chem. Soc., 2003, 125, 1192-1194, DOI: 10.1021/ja029095q.
  117. Kunz, R. K.; MacMillan, D. W. C., " Enantioselective Organocatalytic Cyclopropanations. The Identification of a New Class of Iminium Catalyst Based upon Directed Electrostatic Activation," J. Am. Chem. Soc., 2005, 127, 3240-3241, DOI: 10.1021/ja042774b.
  118. Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III, "Direct Organocatalytic Asymmetric Aldol Reactions of -Amino Aldehydes: Expedient Syntheses of Highly Enantiomerically Enriched anti--Hydroxy--amino Acids," Org. Lett., 2004, 6, 3541-3544, DOI: 10.1021/ol0485417.
  119. Mangion, I. K.; MacMillan, D. W. C., "Total Synthesis of Brasoside and Littoralisone," J. Am. Chem. Soc., 2005, 127, 3696-3697, DOI: 10.1021/ja050064f.
  120. Northrup, A. B.; MacMillan, D. W. C., "The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes," J. Am. Chem. Soc., 2002, 124, 6798-6799, DOI: 10.1021/ja0262378.
  121. List, B.; Pojarliev, P.; Castello, C., "Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes," Org. Lett., 2001, 3, 573-575, DOI: 10.1021/ol006976y.
  122. Mase, N.; Tanaka, F.; Barbas, C. F., III, "Synthesis of -Hydroxyaldehydes with Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions," Angew. Chem. Int. Ed., 2004, 43, 2420-2423, DOI: 10.1002/anie.200353546.
  123. Pidathala, C.; Hoang, L.; Vignola, N.; List, B., "Direct Catalytic Asymmetric Enolexo Aldolizations," Angew. Chem. Int. Ed., 2003, 42, 2785-2788, DOI: 10.1002/anie.200351266.
  124. Notz, W.; List, B., "Catalytic Asymmetric Synthesis of anti-1,2-Diols," J. Am. Chem. Soc., 2000, , 7386-7387, DOI: 10.1021/ja001460v.
  125. List, B.; Lerner, R. A.; Barbas, C. F., III, "Proline-Catalyzed Direct Asymmetric Aldol Reactions," J. Am. Chem. Soc., 2000, 122, 2395-2396, DOI: 10.1021/ja994280y.
  126. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III, "Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions," J. Am. Chem. Soc., 2001, 123, 5260-5267, DOI: 10.1021/ja010037z.
  127. Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B., " Kinetic and Stereochemical Evidence for the Involvement of Only One Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular Aldol Reactions," J. Am. Chem. Soc., 2003, 125, 16-17, DOI: 10.1021/ja028634o.
  128. List, B.; Hoang, L.; J. Martin, H. J., "New Mechanistic Studies on the Proline-Catalyzed Aldol Reaction," Proc. Nat. Acad. Sci. USA, 2004, 101, 5839-5842, DOI: 10.1073/pnas.0307979101.
  129. Agami, C.; Puchot, C.; Sevestre, H., "Is the Mechanism of the Proline-Catalyzed Enantioselective Aldol Reaction Related to Biochemical Processes?," Tetrahedron Lett., 1986, 27, 1501-1504, DOI: 10.1016/S0040-4039(00)84297-5.
  130. Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B., "Nonlinear Effects in Asymmetric Synthesis. Examples in Asymmetric Oxidations and Aldolization Reactions," J. Am. Chem. Soc., 1986, 108, 2353-2357, DOI: 10.1021/ja00269a036.
  131. Jung, M. E., "A Review of Annulation," Tetrahedron, 1976, 32, 3-31, DOI: 10.1016/0040-4020(76)80016-6.
  132. Rankin, K. N.; Gauld, J. W.; Boyd, R. J., "Density Functional Study of the Proline-Catalyzed Direct Aldol Reaction," J. Phys. Chem. A., 2002, 106, 5155-5159, DOI: 10.1021/jp020079p.
  133. Bahmanyar, S.; Houk, K. N., "Transition States of Amine-Catalyzed Aldol Reactions Involving Enamine Intermediates: Theoretical Studies of Mechanism, Reactivity, and Stereoselectivity," J. Am. Chem. Soc., 2001, 123, 11273-11283, DOI: 10.1021/ja011403h.
  134. Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B., "Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions," J. Am. Chem. Soc., 2003, 125, 2475-2479, DOI: 10.1021/ja028812d.
  135. Arn�, M.; Domingo, L. R., "Density Functional Theory Study of the Mechanism of the Proline-Catalyzed Intermolecular Aldol Reaction," Theor. Chem. Acc., 2002, 108, 232-39, DOI: 10.1007/s00214-002-0381-7.
  136. Bahmanyar, S.; Houk, K. N., "The Origin of Stereoselectivity in Proline-Catalyzed Intramolecular Aldol Reactions," J. Am. Chem. Soc., 2001, 123, 12911-12912, DOI: 10.1021/ja011714s.
  137. Clemente, F. R.; Houk, K. N., "Computational Evidence for the Enamine Mechanism of Intramolecular Aldol Reactions Catalyzed by Proline," Angew. Chem. Int. Ed., 2004, 43, 5766-5768, DOI: 10.1063/1.137343310.1002/anie.200460916.
  138. Cheong, P. H.-Y.; Houk, K. N., "Origins and Predictions of Stereoselectivity in Intramolecular Aldol Reactions Catalyzed by Proline Derivatives," Synthesis, 2005, 1533-1537, DOI: 10.1055/s-2005-865332.
  139. List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J., "The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction: Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols," J. Am. Chem. Soc., 2002, 124, 827-833, DOI: 10.1021/ja0174231.
  140. Bahmanyar, S.; Houk, K. N., "Origins of Opposite Absolute Stereoselectivities in Proline-Catalyzed Direct Mannich and Aldol Reactions," Org. Lett., 2003, 5, 1249-1251, DOI: 10.1021/ol034198e.
  141. Mitsumori, S.; Zhang, H.; Ha-YeonCheong, P.; Houk, K. N.; Tanaka, F.; Barbas, C. F., "Direct Asymmetric anti-Mannich-Type Reactions Catalyzed by a Designed Amino Acid," J. Am. Chem. Soc., 2006, 128, 1040-1041, DOI: 10.1021/ja056984f.
  142. Dickerson, T. J.; Janda, K. D., "Aqueous Aldol Catalysis by a Nicotine Metabolite," J. Am. Chem. Soc., 2002, 124, 3220-3221, DOI: 10.1021/ja017774f.
  143. Dickerson, T. J.; Lovell, T.; Meijler, M. M.; Noodleman, L.; Janda, K. D., "Nornicotine Aqueous Aldol Reactions: Synthetic and Theoretical Investigations into the Origins of Catalysis," J. Org. Chem., 2004, 69, 6603-6609, DOI: 10.1021/jo048894j.
  144. Zhang, X.; Houk, K. N., "Acid/Base Catalysis by Pure Water: The Aldol Reaction," J. Org. Chem., 2005, 70, 9712-9716, DOI: 10.1021/jo0509455.