About the Book
Citations
Molecules
Chapter 5 Citations
- Moylan, C. R.; Brauman, J. I. In Advances in Classical Trajectory
Methods; Hase, W., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 2, p 95-114.
- Chabinyc, M. L.; Craig, S. L.; Regan, C. K.; Brauman, J. I.,
"Gas-Phase Ionic Reactions: Dynamics and Mechanism of Nucleophilic
Displacements," Science, 1998, 279, 1882-1886, DOI: 10.1126/science.279.5358.1882.
- Dedieu, A.; Veillard, A., "Comparative Study of Some SN2
Reactions through ab Initio Calculations," ,
1972, 94, 6730-6738, DOI: 10.1021/ja00774a028.
- Keil, F.; Ahlrichs, R., "Theoretical Study of SN2
Reactions. Ab initio Computations on HF and CI
Level," J. Am. Chem. Soc., 1976, 98, 4787-4793, DOI: 10.1021/ja00432a017.
- Wolfe, S.; Mitchell, D. J.; Schlegel, H. B., "Theoretical Studies of SN2 Transition States.
1. Geometries," J. Am. Chem. Soc., 1981, 103, 7692-7694, DOI: 10.1021/ja00415a068.
- Chandrasekhar, J.; Smith, S.
F.; Jorgensen, W. L., "SN2 Reaction Profiles in the Gas Phase
and Aqueous Solution," J. Am. Chem. Soc., 1984, 106, 3049-3050, DOI: 10.1021/ja00322a059.
- Shi, Z.; Boyd, R. J., "An ab initio Study of Model SN2
Reactions with Inclusion of Electron Correlation Effects through Second-Order
Moeller-Plesset Perturbation Calculations," J. Am. Chem. Soc.,
1990, 112, 6789-6796, DOI: 10.1021/ja00175a008.
- Wolfe, S.; Kim, C.-K., "Secondary H/D Isotope Effects in Methyl-Transfer Reactions Decrease with
Increasing Looseness of the Transition Structure,"
J. Am. Chem. Soc., 1991, 113, 8056-8061, DOI: 10.1021/ja00021a035.
- Wladkowski, B. D.; Allen, W. D.; Brauman, J. I., "The SN2
Identity Exchange Reaction F- + CH3F .fwdarw.
FCH3 + F-: Definitive ab Initio
Predictions," J. Phys. Chem., 1994, 98, 13532-13540, DOI: 10.1021/j100102a018.
- Gonzales, J. M.; Cox, R. S., III; Brown, S. T.; Allen, W. D.; Schaefer, H. F., III, "Assessment of
Density Functional Theory for Model SN2 Reactions: CH3X +
F- (X = F, Cl, CN, OH, SH, NH2,
PH2)," J. Phys. Chem. A., 2001,
105, 11327-11346, DOI: 10.1021/jp012892a.
- Streitwieser, A.; Choy, G. S.-C.; Abu-Hasanayn, F.,
"Theoretical Study of Ion Pair SN2 Reactions: Ethyl vs Methyl Reactivities and
Extension to Higher Alkyls," J. Am. Chem. Soc., 1997, 119, 5013-5019, DOI: 10.1021/ja961673d.
- Parthiban, S.; de Oliveira, G.; Martin, J. M. L., "Benchmark ab
Initio Energy Profiles for the Gas-Phase SN2 Reactions Y-
+ CH3X -> CH3Y + X- (X,Y = F,Cl,Br). Validation of Hybrid
DFT Methods," J. Phys. Chem. A., 2001, 105, 895-904, DOI: 10.1021/jp0031000.
- Glukhovtsev, M. N.; Pross, A.; Radom, L., "Gas-Phase Identity
SN2 Reactions of Halide Anions with Methyl Halides: A High-Level
Computational Study," J. Am. Chem. Soc., 1995, 117, 2024-2032, DOI: 10.1021/ja00112a016.
- Gonzales, J. M.; Pak, C.; Cox, R. S.; Allen, W. D.; Schaefer, H. F. I.; Cs�sz�r,
A. G.; Tarczay, G., "Definitive Ab Initio Studies of Model SN2 Reactions
CH3X+F- (X=F, Cl, CN, OH, SH, NH2, PH2),"
Chem. Eur. J., 2003,
9, 2173-2192, DOI: 10.1002/chem.200204408.
- Tucker, S. C.; Truhlar, D. G., "Ab Initio
Calculations of the Transition-State Geometry and Vibrational Frequencies of
the SN2 Reaction of Cl- with CH3Cl," J. Phys. Chem.,
1989, 93, 8138-8142, DOI: 10.1021/j100362a004.
- Glukhovtsev, M. N.; Bach, R. D.; Pross, A.; Radom, L., "The
Performance of B3-LYP Density Functional Theory in Describing SN2
Reactions at Saturated Carbon," Chem. Phys. Lett., 1996,
260, 558-564, DOI: 10.1016/0009-2614(96)00923-2.
- Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B., "High-Pressure Mass
Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase SN2
Reactions," J. Am. Chem. Soc., 1996,
118, 9360-9367, DOI: 10.1021/ja960565o.
- Wladkowski, B. D.; Brauman, J. I., "Application of Marcus
Theory to Gas-Phase SN2 Reactions: Experimental Support of the
Marcus Theory Additivity Postulate," J. Phys. Chem.,
1993, 97, 13158-13164, DOI: 10.1021/j100152a021.
- Caldwell, G.; Magnera, T. F.; Kebarle, P.,
"SN2 reactions in the gas phase. Temperature
dependence of the rate constants and energies of the transition states.
Comparison with solution," J. Am. Chem. Soc., 1984, 106, 959-966, DOI: 10.1021/ja00316a023.
- Knighton, W. B.; Bognar, J. A.; O'Connor, P. M.; Grimsrud, E. P., "Gas-phase SN2 reactions
of chloride ion with alkyl bromides at atmospheric pressure. Temperature
dependence of the rate constants and energies of the transition states," J. Am. Chem. Soc.,
1993, 115, 12079-12084, DOI: 10.1021/ja00078a053.
- Olmstead, W. N.; Brauman, J. I., "Gas-Phase Nucleophilic Displacement
Reactions," J. Am. Chem. Soc., 1977,
99, 4219-4228, DOI: 10.1021/ja00455a002.
- Pellerite, M. J.; Brauman, J. I., "Intrinsic Barriers in
Nucleophilic Displacements. A General Model for Intrinsic Nucleophilicity
Toward Methyl Centers," J. Am. Chem. Soc., 1983,
105, 2672-2680, DOI: 10.1021/ja00347a026.
- Carroll, F. A. Perspectives on Structure and Mechanism in
Organic Chemistry; Brooks/Cole Publishing Co.: Pacific Grove, CA, 1998.
- Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic
Chemistry; 3rd ed.; Harper and Row: New York, 1987.
- DePuy, C. H.; Gronert, S.; Mullin, A.; Bierbaum, V. M.,
"Gas-Phase SN2 and E2 Reactions of Alkyl
Halides," J. Am. Chem. Soc., 1990,
112, 8650-8655, DOI: 10.1021/ja00180a003.
- Regan, C. K.; Craig, S. L.; Brauman, J. I., "Steric Effects and Solvent Effects in
Ionic Reactions," Science, 2002, 295, 2245-2247, DOI: 10.1126/science.1068849.
- Jensen, F., "A Theoretical Study of Steric Effects in SN2 Reactions,"
Chem. Phys. Lett., 1992, 196, 368-376, DOI: 10.1016/0009-2614(92)85984-I.
- Gronert, S., "Theoretical Studies of Elimination Reactions. 3. Gas-Phase Reactions of
Fluoride Ion with (CH3)2CHCl and CH3CH2CH2Cl.
The Effect of Methyl Substituents," J. Am. Chem. Soc., 1993, 115, 652-659, DOI: 10.1021/ja00055a039.
- (Vayner, G.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I.,
"Steric Retardation of SN2 Reactions in the Gas Phase and
Solution," J. Am. Chem. Soc., 2004,
126, 9054-9058, DOI: 10.1021/ja049070m.
- Glukhovtsev, M. N.; Pross, A.; Schlegel, H. B.; Bach, R. D.;
Radom, L., " Gas-Phase Identity SN2 Reactions of Halide Anions
and Methyl Halides with Retention of Configuration," J. Am. Chem. Soc., 1996, 118,
1258-11264, DOI: 10.1021/ja9620191.
- Sauers, R. R., "Inversion vs Retention of Configuration
in Gas-Phase Ammonium Ion/Alcohol Reactions,"
J. Org. Chem., 2002, 67, 1221-1226, DOI: 10.1021/jo016267d.
- Despeyroux, D.; Cole, R. B.; Tabet, J. C., "Ion-Molecule
Reactions in the Gas Phase. XVIII. Nucleophilic
Substitution of Diastereomeric Norborneols, Norbornyl Acetates and Benzoates under Ammonia
Chemical Ionization," Org. Mass Spectrom., 1992,
27, 300-308, DOI: 10.1002/oms.1210270323.
- Helmick, J. S.; Martin, K. A.; Heinrich, J. L.; Novak, M., "Mechanism of the
reaction of carbon and nitrogen nucleophiles with the
model carcinogens O-N-arylhydroxylamines:
competing SN2 substitution and SN1 solvolysis,"
J. Am. Chem. Soc., 1991, 113, 3459-3466, DOI: 10.1021/ja00009a035.
- Ulbrich, R.; Famulok, M.; Bosold,
F.; Boche, G., "SN2 at nitrogen: the
reaction of N-(4-cyanophenyl)-O-(diphenylphosphinoyl)hydroxylamine with N-methylaniline.
A model for the reactions of ultimate carcinogens of aromatic amines with (bio)nucleophiles,"
Tetrahedron Lett., 1990, 31, 1689-1692, DOI: 10.1016/S0040-4039(00)88855-3.
- Singer, B.; Kusmierek, J. T., "Chemical Mutagenesis," Ann. Rev. Biochem.
1982, 51, 655-693, DOI: 10.1146/annurev.bi.51.070182.003255.
- Noiva, R.; Lennarz, W. J., "Protein Disulfide Isomerase," J.
Biol. Chem., 1992, 267, 3553-3556, http://www.jbc.org/cgi/reprint/267/6/3553.
- Perham, R. N., "Domains, Motifs, and Linkers in 2-oxo Acid Dehydrogenase
Multienzyme Complexes: a Paradigm in the Design of a Multifunctional Protein," Biochemistry
1991, 30, 8501-8512, DOI: 10.1021/bi00099a001.
- Nicolaou, K. C.; Dai, W.-M., "Chemistry and Biology of the Enediyne
Anticancer Antibiotics," Angew. Chem. Int. Ed.
Engl., 1991, 30, 1387-1416, DOI: 10.1002/anie.199113873.
- Spallholz, J. E.; Martin, J. L.; Ganther, H. E. Selenium in Biology and Medicine; AVI
Publishing: Westport, CT, 1981.
- Shamberger, R. J. Biochemistry of Selenium; Plenum: New York, 1983.
- B�hl, M.; Schaefer, H. F., III, "SN2 Reaction at Neutral Nitrogen:
Transition State Geometries and Intrinsic Barriers.,"
J. Am. Chem. Soc., 1993,
115, 9143-9147, DOI: 10.1021/ja00073a033.
- Yi, R.; Basch, H.; Hoz, S., "The Periodic Table and the
Intrinsic Barrier in SN2 Reactions," J. Org. Chem., 2002,
67, 5891-5895, DOI: 10.1021/jo020325t.
- Glukhovtsev, M. N.; Pross, A.; Radom, L., "Gas-Phase Identity
SN2 Reactions of Halide Ions at Neutral Nitrogen: A High-Level
Computational Study," J. Am. Chem. Soc., 1995, 117, 9012-9018, DOI: 10.1021/ja00140a018.
- Gareyev, R.; Kato, S.; Bierbaum, V. M., "Gas Phase Reactions of NH2Cl with Anionic
Nucleophiles: Nucleophilic Substitution at Neutral Nitrogen,"
J. Am. Soc. Mass Spectrom., 2001, 12, 139-143, DOI: 10.1016/S1044-0305(00)00210-5.
- Yang, J.; Ren, Y.; Zhu, J.-J.; Chu, S.-Y., "Gas-phase
Non-Identity SN2 Reactions at Neutral Nitrogen: a Hybrid DFT
Study," Int. J. Mass. Spectrom., 2003, 229, 199-208, DOI: 10.1016/S1387-3806(03)00308-7.
- Bachrach, S. M., "Nucleophilic Substitution at Oxygen: the Reaction of PH3 and
NH3 with H3NO. An ab Initio Investigation," J. Org. Chem.,
1990, 55, 1016-1019, DOI: 10.1021/jo00290a037.
- Ren, Y.; Wolk, J. L.; Hoz, S.,
"Hybrid DFT study on the gas-phase SN2 reactions at neutral
oxygen," Int. J. Mass Spectrom., 2003, 225, 167-176, DOI: 10.1016/S1387-3806(02)01113-2.
- Pappas, J. A., "Theoretical Studies of the Reactions of the Sulfur-Sulfur Bond. 1.
General Heterolytic Mechanisms," J. Am. Chem. Soc.,
1977, 99, 2926-2930, DOI: 10.1021/ja00451a013.
- Aida, M.; Nagata, C., "An Ab Initio MO Study on the Thiol-Disulfide Exchange Reaction,"
Chem. Phys. Lett., 1984, 112, 129-132, DOI: 10.1016/0009-2614(84)85006-X.
- Bachrach, S. M.; Mulhearn, D. C., "Nucleophilic Substitution at Sulfur:
SN2 or Addition-Elimination?," J. Phys. Chem., 1996, 100, 3535-3540, DOI: 10.1021/jp953335p.
- Mulhearn,D. C.; Bachrach, S. M., "Selective
Nucleophilic Attack of Trisulfides. An Ab Initio Study," J. Am. Chem. Soc., 1996,
118, 9415-9421, DOI: 10.1021/ja9620090.
- Bachrach, S. M.; Hayes, J. M.; Dao, T.; Mynar, J. L., "Density Functional Theory Gas- and
Solution-Phase Study of Nucleophilic Substitution at Di- and Trisulfides,"
Theor. Chem. Acc., 2002, 107, 266-271, DOI: 10.1007/s00214-002-0323-4.
- Myers, A. G.; Cohen, S. B.; Kwon, B. M., "A Study of the Reaction of Calicheamicin
γ1 with Glutathione in the
Presence of Double-Stranded DNA," J. Am. Chem. Soc., 1994, 116, 1255-1271, DOI: 10.1021/ja00083a012.
- Bachrach, S. M.; Gailbreath, B. D., "Theoretical Study of Nucleophilic
Substitution at Two-Coordinate Sulfur," J. Org. Chem., 2001, 66, 2005-2010, DOI: 10.1021/jo001463q.
- Bachrach, S. M.; Woody, J. T.; Mulhearn, D. C., "Effect of Ring Strain on
the Thiolate-Disulfide Exchange. A Computational
Study," J. Org. Chem., 2002, 67, 8983-8990, DOI: 10.1021/jo026223k.
- Breydo, L.; Gates, K. S., " Activation of Leinamycin by Thiols: A Theoretical Study,"
J. Org. Chem., 2002, 67, 9054-9060, DOI: 10.1021/jo020568l.
- Bachrach, S. M.; Chamberlin,
A. C., "Theoretical Study of Nucleophilic Substitution at the Disulfide
Bridge of Cyclo-L-cystine," J. Org. Chem., 2003, 68, 4743-4747, DOI: 10.1021/jo034046x.
- Norton, S. H.; Bachrach, S. M.; Hayes, J. M., "Theoretical Study of Nucleophilic Substitution at
Sulfur in Sulfinyl Derivatives," J. Org. Chem.,
2005, 70, DOI: /10.1021/jo050581g.
- Gailbreath, B. D.; Pommerening, C. A.; Bachrach, S. M.; Sunderlin, L. S., "The Potential
Energy Surface of SCl3-,"
J. Phys. Chem. A, 2000, 104, 2958-2961, DOI:
10.1021/jp993671w.
- Damrauer, R.; Burggraf, L. W.; Davis, L. P.; Gordon, M. S.,
"Gas-Phase and Computational Studies of Pentacoordinate
Silicon," J. Am. Chem. Soc., 1988, 110, 6601-6606, DOI: 10.1021/ja00228a001.
- Deiters, J. A.; Holmes, R. R.; Holmes, J. M., "Fluorine and Chlorine
Apicophilicities in Five-Coordinated Phosphorus and Silicon
Compounds via Molecular Orbital Calculations. A Model for Nucleophilic Substitution.," J. Am. Chem. Soc.,
1988, 110, 7672-7681, DOI: 10.1021/ja00231a015.
- Gronert, S.; Glaser, R.; Streitwieser, A., "Charge Transfers and Polarizations
in Bonds to Silicon. Organosilanes
and the SN2(Si) Reaction of Silane with Fluoride. An ab Initio Study.," J. Am. Chem. Soc.,
1989, 111, 3111-3117, DOI: 10.1021/ja00191a001.
- Bachrach, S. M.; Mulhearn, D. C., "Theoretical Studies of Nucleophilic
Substitution at Phosphorus. PH3 + H- -> H- + PH3,"
J. Phys. Chem.,
1993, 97, 12229-12231, DOI: 10.1021/j100149a022.
- S�lling, T. I.; Pross, A.; Radom, L., "A High-Level ab Initio Investigation of Identity and Nonidentity
Gas-Phase SN2 Reactions of Halide Ions with Halophosphines,"
Int. J. Mass Spectrom., 2001, 210/211, 1-11, DOI: 10.1016/S1387-3806(01)00426-2.
- Bachrach, S. M.; Demoin, D. W.; Luk, M.; Miller, J. V., Jr., "Nucleophilic
Attack at Selenium in Diselenides and Selenosulfides. A
Computational Study," J. Phys. Chem. A, 2004, 108, 4040-4046, DOI: 10.1021/jp037972o.
- Tanaka, K.; Mackay, G. I.; Payzant, J. D.; Bohme, D. K., "Gas-phase Reactions of
Anions with Halogenated Methanes at 297 � 2 K," Can. J. Chem., 1976, 54, 1643-1659,
DOI: 10.1139/v76-234.
- Bohme, D. K.; Raksit, A. B., "Gas-phase measurements of the
influence of stepwise solvation on the kinetics of nucleophilic displacement
reactions with chloromethane and bromomethane at room
temperature," J. Am. Chem. Soc., 1984, 106, 3447-3452, DOI: 10.1021/ja00324a011.
- Viggiano, A. A.; Arnold, S. T.; Morris, R. A.; Ahrens, A. F.; Hierl,
P. M., "Temperature Dependences of the Rate Constants and Branching Ratios
for the Reactions of OH-(H2O)0-4 + CH3Br,"
J. Phys. Chem., 1996, 100, 14397-14402,
10.1021/jp961250y.
- Seeley, J. V.; Morris, R. A.; Viggiano, A. A., "Temperature Dependences of
the Rate Constants and Branching Ratios for the Reactions of F-(H2O)0-5 with CH3Br," , 1997, 101, 4598-4601, DOI:
10.1021/jp970492a.
- Jorgensen, W. L.; Chandrasekhar, J.; Madura,, D. M.; Impey, J. W.; Klein, M. L., "Comparison of
Simple Potential Functions for Simulating Liquid Water," J. Chem. Phys., 1983, 79,
926-935, DOI: 10.1063/1.445869.
- McLennan, D. J., "Semiempirical Calculation of Rates of SN2 Finkelstein Reactions in
Solution by a Quasi-Thermodynamic Cycle," Aust. J. Chem., 1978, 31, 1897-1909.
- Cossi, M.; C., A.; Barone, V., "Solvent Effects on an SN2
Reaction Profile," Chem. Phys. Lett., 1998, 297, 1-7, DOI: 10.1016/S0009-2614(98)01091-4.
- Mohamed, A. A.; Jensen, F., " Steric Effects in SN2 Reactions. The
Influence of Microsolvation," J. Phys. Chem. A.,
2001, 105, 3259-3268<, DOI: 10.1021/jp002802m.
- Hughes, E. D.; Ingold, C. K.; Mackie, J. D. H., "Mechanism of
Substitution at a Saturated Carbon Atom. XLIII. Kinetics of the Interaction of
Chloride Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc., 1955,
3173-3177, DOI: 10.1039/jr9550003173.
- De la Mare, P. B. D., "Mechanism of Substitution at a Saturated Carbon Atom. XLV. Kinetics of
the Interaction of Bromide Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc., 1955,
3180-3187, DOI: 10.1039/jr9550003180.
- Morokuma, K., "Potential Energy Surface of the SN2 Reaction in Hydrated
Clusters," J. Am. Chem. Soc., 1982, 104, 3732-3733, DOI: 10.1021/ja00377a037.
- Hayes, J. M.; Bachrach, S. M., " Effect of Micro and Bulk Solvation on the
Mechanism of Nucleophilic Substitution at Sulfur in Disulfides," J. Phys. Chem. A,
2003, 107, 7952-7961, DOI: 10.1021/jp035407f.
- Cram, D. J.; Kopecky, K. R., "Studies in Stereochemistry. XXX.
Models for Steric Control of Asymmetric Induction,"
J. Am. Chem. Soc., 1959, 81, 2748 - 2755, DOI: 10.1021/ja01520a036.
- Karabatsos, G. J., "Asymmetric Induction. A Model for Additions to Carbonyls Directly Bonded
to Asymmetric Carbons," J. Am. Chem. Soc., 1967, 89, 1367 - 1371, DOI: 10.1021/ja00982a015.
- Ch�rest, M.; Felkin, H.; Prudent, N., "Torsional strain involving partial bonds. The
stereochemistry of the lithium aluminium hydride reduction of some simple open-chain ketones,"
Tetrahedron Lett., 1968, 9, 2199-2204, DOI: 10.1016/S0040-4039(00)89719-1.
- Anh, N. T.; Eistenstein, O., "Theoretical
Interpretation of 1-2 Asymmetric Induction - Importance of Antiperiplanarity,"
Nouv. J. Chim., 1977, 1, 61-70.
- Lodge, E. P.; Heathcock, C. H., "Acyclic Stereoselection.
40. Steric Effects, as Well as σ*-Orbital Energies, are Important in Diastereoface
Differentiation in Additions to Chiral Aldehydes," J.
Am. Chem. Soc., 1987, 109, 3353-3361, DOI: 10.1021/ja00245a027.
- Kaufmann, E.; Schleyer, P. v. R.; Houk, K. N.; Wu, Y.-D., "Ab Initio
Mechanisms for the Addition of CH3Li, HLi,
and Their Dimers to Formaldehyde," J. Am. Chem. Soc.,
1985, 107, 5560-5562, DOI: 10.1021/ja00305a058.
- Wong, S. S.; Paddon-Row, M. N., "Theoretical Evidence in Support of
the Anh�Eisenstein Electronic Model in Controlling π-Facial Stereoselectivity
in Nucleophilic Additions to Carbonyl Compounds,"
J. Chem. Soc., Chem. Commun., 1990, 456 - 458, DOI: 10.1039/C39900000456.
- Gung, B. W., "Diastereofacial Selection in Nucleophilic Additions to
Unsymmetrically Substituted Trigonal Carbons," Tetrahedron, 1996,
52, 5263-5301, DOI: 10.1016/0040-4020(95)01023-8.
- Houk, K. N., "Perspective on "Theoretical interpretation of 1-2 asymmetric
induction. The importance of antiperiplanarity":
Anh NT, Eisenstein O (1977) Nouv
J Chim 1: 61-70," Theor. Chem. Acc., 2000, 103, 330 - 331, DOI: 10.1007/s002149900037.
- Cieplak, A. S., "Stereochemistry of Nucleophilic Addition to Cyclohexanone.
The Importance of Two-Electron Stabilizing Interactions," J. Am. Chem. Soc.,
1981, 103, 4540-4552
, DOI: 10.1021/ja00405a041.
- Cieplak, A. S.; Tait, B. D.; Johnson, C. R., "Reversal of π-Facial Diastereoselection
upon Electronegative Substitution of the Substrate and the Reagent," J. Am. Chem. Soc.,
1989, 111, 8447-8462, DOI: 10.1021/ja00204a018.
- Halterman, R. L.; McEvoy, M. A., "Diastereoselectivity
in the Reduction of Sterically Unbiased 2,2-Diarylcyclopentanones,"
J. Am. Chem. Soc., 1990, 112, 6690-6695, DOI: 10.1021/ja00174a036.
- Kaselj, M.; Chung, W.-S.; le Noble, W. J., "Face Selection in Addition and
Elimination in Sterically Unbiased Systems," Chem. Rev., 1999, 99,
1387-1414, DOI: 10.1021/cr980364y.
- Wu, Y. D.; Houk, K. N., "Electronic and Conformational Effects on π-Facial
Stereoselectivity in Nucleophilic Additions to
Carbonyl Compounds," J. Am. Chem. Soc., 1987, 908-910, DOI: 10.1021/ja00237a051.
- Adcock, W.; Abeywickrema, A. N., "Substituent Effects in the
Bicyclo[2.2.2]octane Ring System. A Carbon-13 and Fluorine-19 Nuclear Magnetic Resonance Study of
4-Substituted Bicyclo [2.2.2]oct-1-yl Fluorides," J. Org. Chem., 1982, 47, 2957-2966, DOI: 10.1021/jo00136a029.
- Laube, T.; Ha, T. K., "Detection of Hyperconjugative
Effects in Experimentally Determined Structures of Neutral Molecules," J. Am. Chem. Soc.,
1988, 110, 5511-5517, DOI: /10.1021/ja00224a040.
- Rozeboom, M. D.; Houk, K. N., "Stereospecific Alkyl Group
Effects on Amine Lone-pair Ionization Potentials: Photoelectron Spectra of
Alkylpiperidines," J. Am. Chem. Soc., 1982, 104, 1189-1191, DOI: 10.1021/ja00369a006.
- Frenking, G.; Koehler, K. F.; Reetz, M. T., "The Origin of
π-Facial Diastereofacial Selectivity in Addition Reactions to Cyclohexane-Based
Systems," Angew. Chem., Int. Ed. Engl, 1991, 30, 1146-1149, DOI: 10.1002/anie.199111461.
- Frenking, G.; F., K. K.; Reetz, M. T., "On the Origin of
π-Facial Diastereoselectivity in Nucleophilic Additions to Chiral Carbonyl
Compounds. 2. Calculated Transition State Structures for the Addition of
Nucleophiles to Propionaldehyde 1, Chloroacetyldehyde 2, and 2-Chloropropionaldehyde
3.," Tetrahedron, 1991, 47, 9005-9018, DOI: 10.1016/S0040-4020(01)86505-4.
- Wong, S. S.; Paddon-Row, M. N., "The importance of electrostatic
effects in controlling π-facial stereoselectivity in nucleophilic additions to carbonyl
compounds: an ab initio MO study of a prototype chelation model," J.
Chem. Soc., Chem. Commun., 1991, 327-330, DOI: 10.1039/C39910000327.
- Wu, Y.-D.; Tucker, J. A.; Houk, K. N., "Stereoselectivities of
nucleophilic additions to cyclohexanones substituted by polar groups. Experimental investigation of reductions of
trans-decalones and theoretical studies of cyclohexanone reductions. The influence of remote
electrostatic effects," J. Am. Chem. Soc., 1991, 113, 5018-5027, DOI: 10.1021/ja00013a042.
- Luibrand, R. T.; Taigounov, I. R.; Taigounov,
A. A., "A Theoretical Study of the Reaction of Lithium Aluminum Hydride
with Formaldehyde and Cyclohexanone," J. Org. Chem.,
2001, 66, 7254-7262, DOI: 10.1021/jo005754a.
- Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N., "Electrostatic Control of the
Stereochemistry of Nucleophilic Additions to Substituted 7-Norbornanones,"
J. Am. Chem. Soc., 1992,
114, 10638-10639, DOI: 10.1021/ja00052a071.
- Williams, L.; Paddon-Row, M. N., "Electrostatic and steric control
of π-facial stereoselectivity in nucleophilic additions of LiH and
MeLi to endo-5,6-disubstituted norbornen-7-ones: an ab initio MO study," J. Chem. Soc., Chem. Commun.
1994, 353-355, DOI: 10.1039/C39940000353.
- Fleming, I.; Hrovat, D. A.; Borden, W. T., "The Origin of
Felkin�Anh Control from an Electropositive Substituent Adjacent to the Carbonyl Group,"
J. Chem. Soc., Perkin Trans. 2, 2001, 331-338, DOI: 10.1039/b008409n.
- Smith, R. J.; Trzoss, M.; B�hl, M.; Bienz, S., "The Cram Rule Revisited Once
More - Revision of the Felkin-Anh
Model," Eur. J. Org. Chem., 2002, 2770 - 2775, DOI: 10.1002/1099-0690(200208)2002:16<2770::AID-EJOC2770>3.0.CO;2-X.
- Heathcock, C. H. In Asymmetric Synthesis; Morrison, J.
D., Ed.; Academic Press: Orlando, Fla, 1984; Vol. 3, p 111-212.
- Atkinson, R. S. Stereoselective Synthesis; Wiley: Chichester, UK, 1995.
- Machajewski, T. D.; Wong, C.-H., "The Catalytic Asymmetric Aldol
Reaction," Angew. Chem. Int. Ed., 2000, 39, 1352 - 1375, DOI: 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J.
- Tanaka, F.; Barbas, C. F., III In Modern Aldol
Reactions; Mahrwald, R., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 2004; Vol. 1, p 273-310.
- Hajos, Z. G.; Parrish, D. R., "Asymmetric Synthesis of Bicyclic
Intermediates of Natural Product Chemistry,"
J. Org. Chem., 1974, 39, 1615-1621, DOI: 10.1021/jo00925a003.
- Eder, U.; Sauer, G.; Wiechert, R., "New Type of Asymmetric Cyclization to
Optically Active Steroid CD Partial Structures," Angew. Chem. Int. Ed. Engl., 1971,
10, 496-497, DOI: 10.1002/anie.197104961.
- Agami,C.; Platzer, N.; Sevestre, H., "Enantioselective Cyclizations
of Acyclic 1,5-Diketones," Bul. Soc. Chim. Fr., 1987, 2, 358-360.
- List, B., "Proline-Catalyzed Asymmetric Reactions,"
Tetrahedron, 2002, 58, 5573-5590, DOI: 10.1016/S0040-4020(02)00516-1.
- List, B., " Enamine Catalysis Is a Powerful Strategy for the Catalytic
Generation and Use of Carbanion Equivalents," Acc. Chem. Res.,
2004, 37, 548-557
, DOI: 10.1021/ar0300571.
- Notz, W.; Tanaka, F.; Barbas, C. F., III, "
Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct
Catalytic Asymmetric Aldol, Mannich,
Michael, and Diels-Alder Reactions," Acc. Chem. Res., 2004, 37, 580-591, DOI: 10.1021/ar0300468.
- Northrup, A. B.; MacMillan, D. W. C., "The First General Enantioselective
Catalytic Diels-Alder Reaction with Simple α,β-Unsaturated
Ketones," J. Am. Chem. Soc., 2002, 124, 2458-2460, DOI: 10.1021/ja017641u.
- Paras, N. A.; MacMillan, D. W. C., "The Enantioselective
Organocatalytic 1,4-Addition of Electron-Rich Benzenes to α,β-Unsaturated
Aldehydes," J. Am. Chem. Soc., 2002, 124, 7894-7895, DOI: 10.1021/ja025981p.
- Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C., "The First Enantioselective
Organocatalytic Mukaiyama-Michael Reaction: A Direct Method for the Synthesis of Enantioenriched
-Butenolide Architecture," J. Am. Chem. Soc., 2003, 125, 1192-1194, DOI: 10.1021/ja029095q.
- Kunz, R. K.; MacMillan, D. W. C., " Enantioselective
Organocatalytic Cyclopropanations. The Identification of a New Class of Iminium Catalyst
Based upon Directed Electrostatic Activation," J. Am. Chem. Soc., 2005, 127, 3240-3241,
DOI: 10.1021/ja042774b.
- Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III, "Direct
Organocatalytic Asymmetric Aldol Reactions of -Amino Aldehydes: Expedient Syntheses of
Highly Enantiomerically Enriched anti--Hydroxy--amino Acids," Org. Lett.,
2004, 6, 3541-3544, DOI: 10.1021/ol0485417.
- Mangion, I. K.; MacMillan, D. W. C., "Total Synthesis of Brasoside
and Littoralisone," J. Am. Chem. Soc., 2005, 127, 3696-3697, DOI: 10.1021/ja050064f.
- Northrup, A. B.; MacMillan, D. W. C., "The First Direct and Enantioselective
Cross-Aldol Reaction of Aldehydes,"
J. Am. Chem. Soc., 2002, 124, 6798-6799, DOI: 10.1021/ja0262378.
- List, B.; Pojarliev, P.; Castello, C., "Proline-Catalyzed Asymmetric Aldol
Reactions between Ketones and α-Unsubstituted Aldehydes,"
Org. Lett., 2001, 3, 573-575, DOI: 10.1021/ol006976y.
- Mase, N.; Tanaka, F.; Barbas, C. F., III, "Synthesis of -Hydroxyaldehydes with
Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol
Reactions," Angew. Chem. Int. Ed., 2004, 43, 2420-2423, DOI: 10.1002/anie.200353546.
- Pidathala, C.; Hoang, L.; Vignola, N.; List, B.,
"Direct Catalytic Asymmetric Enolexo
Aldolizations," Angew. Chem. Int. Ed., 2003, 42, 2785-2788, DOI: 10.1002/anie.200351266.
- Notz, W.; List, B., "Catalytic Asymmetric Synthesis of
anti-1,2-Diols," J. Am. Chem. Soc., 2000, , 7386-7387, DOI: 10.1021/ja001460v.
- List, B.; Lerner, R. A.; Barbas, C. F., III, "Proline-Catalyzed Direct
Asymmetric Aldol Reactions," J. Am. Chem. Soc., 2000, 122, 2395-2396, DOI: 10.1021/ja994280y.
- Sakthivel, K.; Notz, W.; Bui, T.; Barbas,
C. F., III, "Amino Acid Catalyzed Direct Asymmetric Aldol
Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon
Bond-Forming Reactions," J. Am. Chem. Soc., 2001, 123, 5260-5267, DOI: 10.1021/ja010037z.
- Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B., " Kinetic and
Stereochemical Evidence for the Involvement of Only One
Proline Molecule in the Transition States of Proline-Catalyzed Intra- and
Intermolecular Aldol Reactions," J. Am. Chem. Soc.,
2003, 125, 16-17, DOI: 10.1021/ja028634o.
- List, B.; Hoang, L.; J. Martin, H. J., "New Mechanistic Studies on the Proline-Catalyzed
Aldol Reaction," Proc. Nat. Acad. Sci. USA,
2004, 101, 5839-5842, DOI:
10.1073/pnas.0307979101.
- Agami, C.; Puchot, C.; Sevestre, H., "Is the Mechanism of the Proline-Catalyzed Enantioselective
Aldol Reaction Related to Biochemical Processes?," Tetrahedron
Lett., 1986, 27, 1501-1504, DOI: 10.1016/S0040-4039(00)84297-5.
- Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B.,
"Nonlinear Effects in Asymmetric Synthesis. Examples in Asymmetric
Oxidations and Aldolization Reactions," J. Am. Chem. Soc., 1986, 108, 2353-2357,
DOI: 10.1021/ja00269a036.
- Jung, M. E., "A Review of Annulation," Tetrahedron, 1976, 32, 3-31,
DOI: 10.1016/0040-4020(76)80016-6.
- Rankin, K. N.; Gauld, J. W.; Boyd, R. J., "Density Functional Study
of the Proline-Catalyzed Direct Aldol Reaction,"
J. Phys. Chem. A., 2002, 106, 5155-5159, DOI: 10.1021/jp020079p.
- Bahmanyar, S.; Houk, K. N., "Transition States of Amine-Catalyzed Aldol
Reactions Involving Enamine Intermediates:
Theoretical Studies of Mechanism, Reactivity, and Stereoselectivity,"
J. Am. Chem. Soc., 2001,
123, 11273-11283, DOI: 10.1021/ja011403h.
- Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B., "Quantum Mechanical Predictions
of the Stereoselectivities of Proline-Catalyzed
Asymmetric Intermolecular Aldol Reactions," J. Am. Chem. Soc.,
2003, 125, 2475-2479, DOI: 10.1021/ja028812d.
- Arn�, M.; Domingo, L. R., "Density Functional Theory
Study of the Mechanism of the Proline-Catalyzed Intermolecular
Aldol Reaction," Theor. Chem. Acc., 2002, 108, 232-39, DOI: 10.1007/s00214-002-0381-7.
- Bahmanyar, S.; Houk, K. N., "The Origin of Stereoselectivity
in Proline-Catalyzed Intramolecular
Aldol Reactions," J. Am. Chem. Soc., 2001, 123, 12911-12912, DOI: 10.1021/ja011714s.
- Clemente, F. R.; Houk, K. N., "Computational Evidence for the Enamine
Mechanism of Intramolecular Aldol Reactions Catalyzed by Proline,"
Angew. Chem. Int. Ed., 2004, 43, 5766-5768, DOI: 10.1063/1.137343310.1002/anie.200460916.
- Cheong, P. H.-Y.; Houk, K. N., "Origins and Predictions of Stereoselectivity
in Intramolecular Aldol Reactions Catalyzed by Proline Derivatives,"
Synthesis, 2005, 1533-1537, DOI: 10.1055/s-2005-865332.
- List, B.; Pojarliev, P.; Biller, W. T.;
Martin, H. J., "The Proline-Catalyzed Direct Asymmetric Three-Component
Mannich Reaction: Scope, Optimization, and Application to
the Highly Enantioselective Synthesis of 1,2-Amino Alcohols," J.
Am. Chem. Soc., 2002, 124, 827-833, DOI: 10.1021/ja0174231.
- Bahmanyar, S.; Houk, K. N., "Origins of Opposite
Absolute Stereoselectivities in Proline-Catalyzed Direct Mannich and Aldol
Reactions," Org. Lett., 2003, 5, 1249-1251, DOI: 10.1021/ol034198e.
- Mitsumori, S.; Zhang, H.; Ha-YeonCheong, P.; Houk, K. N.;
Tanaka, F.; Barbas, C. F., "Direct Asymmetric anti-Mannich-Type
Reactions Catalyzed by a Designed Amino Acid,"
J. Am. Chem. Soc., 2006, 128, 1040-1041, DOI: 10.1021/ja056984f.
- Dickerson, T. J.; Janda, K. D., "Aqueous Aldol
Catalysis by a Nicotine Metabolite," J. Am. Chem. Soc., 2002, 124, 3220-3221, DOI: 10.1021/ja017774f.
- Dickerson, T. J.; Lovell, T.; Meijler, M. M.; Noodleman,
L.; Janda, K. D., "Nornicotine Aqueous Aldol Reactions: Synthetic and Theoretical
Investigations into the Origins of Catalysis,"
J. Org. Chem., 2004, 69, 6603-6609, DOI: 10.1021/jo048894j.
- Zhang, X.; Houk, K. N., "Acid/Base Catalysis by Pure Water: The Aldol
Reaction," J. Org. Chem., 2005, 70, 9712-9716, DOI: 10.1021/jo0509455.