Chapter 3 Citations

  1. Woodward, R. B.; Hoffmann, R., "The Conservation of Orbital Symmetry," Angew. Chem. Int. Ed. Eng., 1969, 8, 781-853, DOI: 10.1002/anie.196907811.
  2. Fukui, K., "Recognition of Stereochemical Paths by Orbital Interaction," Acc. Chem. Res., 1971, 4, 57-64, DOI: 10.1021/ar50038a003.
  3. Fukui, K. Theory of Orientation and Stereoselection; Springer-Verlag: Berlin, 1975.
  4. Zimmerman, H., "M�bius-H�ckel Concept in Organic Chemistry. Application of Organic Molecules and Reactions," Acc. Chem. Res., 1971, 4, 272-280, DOI: 10.1021/ar50044a002.
  5. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; 3rd ed.; Harper and Row: New York, 1987.
  6. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole Publishing Co.: Pacific Grove, CA, 1998.
  7. Fleming, I. Pericyclic Reactions; Oxford University Press: Oxford, 1999.
  8. Houk, K. N.; Li, Y.; Evanseck, J. D., "Transition Structures of Hydrocarbon Pericyclic Reactions," Angew. Chem. Int. Ed. Eng., 1992, 31, 682-708, DOI: 10.1002/anie.199206821.
  9. Houk, K. N.; Gonzalez, J.; Li, Y., "Pericyclic Transition States: Passion and Punctilios, 1935-1995," Acc. Chem. Res., 1995, 28, 81-90, DOI: 10.1021/ar00050a004.
  10. Wiest, O.; Houk, K. N., "Density Functional Theory Calculations of Pericyclic Reaction Transition Structures," Top. Curr. Chem., 1996, 183, 1-24.
  11. Rowley, D.; Steiner, H., "Kinetics of Diene Reactions at High Temperatures," Discuss. Faraday Soc., 1951, 198-213, DOI: 10.1039/df9511000198.
  12. Guner, V.; Khuong, K. S.; Leach, A. G.; Lee, P. S.; Bartberger, M. D.; Houk, K. N., "A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmarking of Computational Methods: The Performance of ab Initio, Density Functional, CASSCF, CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barriers, Reaction Energetics, and Transition State Geometries," J. Phys. Chem. A, 2003, 107, 11445-11459, DOI: 10.1021/jp035501w.
  13. Houk, K. N.; Lin, Y. T.; Brown, F. K., "Evidence for the Concerted Mechanism of the Diels-Alder Reaction of Butadiene with Ethylene," J. Am. Chem. Soc., 1986, 108, 554-556, DOI: 10.1021/ja00263a059.
  14. Bach, R. D.; McDouall, J. J. W.; Schlegel, H. B., "Electronic Factors Influencing the Activation Barrier of the Diels-Alder Reaction. An Ab Initio Study," J. Org. Chem., 1989, 54, 2931-2935, DOI: http://dx.doi.org/10.1021/jo00273a029.
  15. Stanton, R. V.; M. Merz, K. M., Jr., "Density Functional Transition States of Organic and Organometallic Reactions," J. Chem. Phys., 1994, 100, 434-443, DOI: 10.1063/1.466956.
  16. Li, Y.; Houk, K. N., "Diels-Alder Dimerization of 1,3-Butadiene: An ab initio CASSCF Study of the Concerted and Stepwise Mechanisms and Butadiene-Ethylene Revisited," J. Am. Chem. Soc., 1993, 115, 7478-7485, DOI: 10.1021/ja00069a055.
  17. Barone, B.; Arnaud , R., "Diels�Alder Reactions: An Assessment of Quantum Chemical Procedures," J. Chem. Phys., 1997, 106, 8727-8732, DOI: 10.1063/1.473933.
  18. Isobe, H.; Takano, Y.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Yamaguchi, K.; Houk, K. N., "Extended Hartree�Fock (EHF) Theory of Chemical Reactions VI: Hybrid DFT and post-Hartree�Fock Approaches for Concerted and Non-concerted Transition Structures of the Diels�Alder Reaction," Mol. Phys., 2002, 100, 717-727, DOI: 10.1080/00268970110092375.
  19. Sakai, S., "Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels-Alder Reaction between Butadiene and Ethylene," J. Phys. Chem. A, 2000, 104, 922-927, DOI: 10.1021/jp9926894.
  20. Lischka, H.; Ventura, E.; Dallos, M., "The Diels-Alder Reaction of Ethene and 1,3-Butadiene: An Extended Multireference ab initio Investigation," ChemPhysChem 2004, 5, 1365-1371, DOI: 10.1002/cphc.200400104.
  21. Jorgensen, W. L.; Lim, D.; Blake, J. F., "Ab Initio Study of Diels-Alder Reactions of Cyclopentadiene with Ethylene, Isoprene, Cyclopentadiene, Acrylonitrile, and Methyl Vinyl Ketone," J. Am. Chem. Soc., 1993, 115, 2936-2942, DOI: 10.1021/ja00060a048.
  22. Szalay, P. G.; Bartlett , R. J., "Multi-Reference Averaged Quadratic Coupled-Cluster Method: a Size-Extensive Modification of Multi-Reference CI," Chem. Phys. Lett., 1993, 214, 481-488, DOI: 10.1016/0009-2614(93)85670-J.
  23. Jursic, B.; Zdravkovski, Z., "DFT study of the Diels�Alder Reactions between Ethylene with Buta-1,3-diene and Cyclopentadiene," J. Chem. Soc., Perkin Trans. 2, 1995, 1223-1226, DOI: 10.1039/P29950001223.
  24. Goldstein, E.; Beno, B.; Houk, K. N., "Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels-Alder Reaction of Butadiene and Ethylene," J. Am. Chem. Soc., 1996, 118, 6036-6043, DOI: 10.1021/ja9601494.
  25. Kraka, E.; Wu, A.; Cremer, D., "Mechanism of the Diels-Alder Reaction Studied with the United Reaction Valley Approach: Mechanistic Differences between Symmetry-Allowed and Symmetry-Forbidden Reactions," J. Phys. Chem. A, 2003, 107, 9008-9021, DOI: 10.1021/jp030882z.
  26. Guner, V. A.; Khuong, K. S.; Houk, K. N.; Chuma, A.; Pulay, P., "The Performance of the Handy/Cohen Functionals, OLYP and O3LYP, for the Computation of Hydrocarbon Pericyclic Reaction Activation Barriers," J. Phys. Chem. A, 2004, 108, 2959-2965, DOI: 10.1021/jp0369286.
  27. Froese, R. D. J.; Humbel, S.; Svensson, M.; Morokuma, K., "IMOMO(G2MS): A New High-Level G2-Like Method for Large Molecules and Its Applications to Diels-Alder Reactions," J. Phys. Chem. A, 1997, 101, 227-233, DOI: 10.1021/jp963019q.
  28. Herges, R.; Jiao, H.; Schleyer, P. v. R., "Magnetic Properties of Aromatic Transition States: The Diels-Alder Reactions," Angew<. Chem. Int. Ed. Engl., 1994, 33, 1376-1378, DOI: 10.1002/anie.199413761.
  29. Bradley, A. Z.; Kociolek, M. G.; Johnson, R. P., "Conformational Selectivity in the Diels-Alder Cycloaddition: Predictions for Reactions of s-trans-1,3-Butadiene," J. Org. Chem., 2000, 65, 7134 - 7138, DOI: 10.1021/jo000916o.
  30. Kobko, N.; Dannenberg, J. J., "Effect of Basis Set Superposition Error (BSSE) upon ab Initio Calculations of Organic Transition States," J. Phys. Chem. A, 2001, 105, 1944-1950, DOI: 10.1021/jp001970b.
  31. Jiao, H.; Schleyer, P. v. R., "Aromaticity of Pericyclic Reaction Transition Structures: Magnetic Evidence," J. Phys. Org. Chem., 1998, 11, 655-662, DOI: 10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U.
  32. Doering, W. v. E.; Franck-Neumann, M.; Hasselmann, D.; Kaye, R. L., "Mechanism of a Diels-Alder Reaction. Butadiene and its Dimers," J. Am. Chem. Soc., 1972, 94, 3833-3844, DOI: 10.1021/ja00766a029.
  33. Doering, W. v. E.; Roth, W. R.; Breuckmann, R.; Figge, L.; Lennartz, H.-W.; Fessner, W.-D.; Prinzbach, H., "Verbotene Reaktionene. [2+2]-Cycloreversion starrer Cyclobutane," Chem. Ber. 1988, 121, 1-9.
  34. Dewar, M. J. S., "Multibond Reactions Cannot Normally be Synchronous," J. Am. Chem. Soc., 1984, 106, 209-219, DOI: 10.1021/ja00313a042.
  35. Bigeleisen, J.; Mayer, M. G., "Calculation of Equilibrium Constants for Isotopic Exchange Reactions," J. Chem. Phys. 1947, 15, 261-267, DOI: 10.1063/1.1746492.
  36. Storer, J. W.; Raimondi, L.; Houk, K. N., "Theoretical Secondary Kinetic Isotope Effects and the Interpretation of Transition State Geometries. 2. The Diels-Alder Reaction Transition State Geometry," J. Am. Chem. Soc., 1994, 116, 9675-9683, DOI: 10.1021/ja00100a037.
  37. Streitwieser, A., Jr.; Jagow, R. H.; Fahey, R. C.; Suzuki, S., "Kinetic Isotope Effects in the Acetolyses of Deuterated Cyclopentyl Tosylates," J. Am. Chem. Soc., 1958, 80, 2326-2332, DOI: 10.1021/ja01542a075.
  38. Gajewski, J. J.; Peterson, K. B.; Kagel, J. R.; Huang, Y. C. J., "Transition-State Structure Variation in the Diels-Alder Reaction from Secondary Deuterium Kinetic Isotope Effects. The Reaction of Nearly Symmetrical Dienes and Dienophiles is Nearly Synchronous," J. Am. Chem. Soc., 1989, 111, 9078-9081, DOI: 10.1021/ja00207a013.
  39. Van Sickle, D. E.; Rodin, J. O., "The Secondary Deuterium Isotope Effect on the Diels-Alder Reaction," J. Am. Chem. Soc., 1964, 86, 3091-3094, DOI: 10.1021/ja01069a024.
  40. Singleton, D. A.; Thomas, A. A., "High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance," J. Am. Chem. Soc., 1995, 117, 9357-9358, DOI: 10.1021/ja00141a030.
  41. Beno, B. R.; Houk, K. N.; Singleton, D. A., "Synchronous or Asynchronous? An "Experimental" Transition State from a Direct Comparison of Experimental and Theoretical Kinetic Isotope Effects for a Diels-Alder Reaction," J. Am. Chem. Soc., 1996, 118, 9984-9985, DOI: 10.1021/ja9615278.
  42. Singleton, D. A.; Hang, C., "Isotope Effects and the Experimental Transition State for a Prototypical Thermal Ene Reaction," Tetrahedron Lett., 1999, 40, 8939-8943, DOI: 10.1016/S0040-4039(99)01923-1.
  43. Singleton, D. A.; Merrigan, S. R.; Beno, B. R.; Houk, K. N., "Isotope effects for Lewis acid catalyzed Diels-Alder reactions. The experimental transition state," Tetrahedron Lett. 1999, 40, 5817-5821, DOI: 10.1016/S0040-4039(99)01148-X.
  44. Singleton, D. A.; Merrigan, S. R., "Resolution of Conflicting Mechanistic Observations in Ester Aminolysis. A Warning on the Qualitative Prediction of Isotope Effects for Reactive Intermediates," J. Am. Chem. Soc., 2000, 122, 11035-11036, DOI: 10.1021/ja005519+.
  45. Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N., "Mechanism of Ene Reactions of Singlet Oxygen. A Two-Step No-Intermediate Mechanism," J. Am. Chem. Soc., 2003, 125, 1319-1328, DOI: 10.1021/ja027225p.
  46. Vo, L. K.; Singleton, D. A., "Isotope Effects and the Nature of Stereo- and Regioselectivity in Hydroaminations of Vinylarenes Catalyzed by Palladium(II)-Diphosphine Complexes," Org. Lett.. 2004, 6, 2469-2472, DOI: 10.1021/ol049137a.
  47. Singleton, D. A.; Schulmeier, B. E.; Hang, C.; Thomas, A. A.; Leung, S.-H.; R. Merrigan, S. R., "Isotope Effects and the Distinction between Synchronous, Asynchronous, and Stepwise Diels�Alder Reactions," Tetrahedron, 2001, 57, 5149-5160, DOI: 10.1016/S0040-4020(01)00354-4.
  48. Gajewski, J. J. Hydrocarbon Thermal Isomerizations; Academic Press: New York, 1981.
  49. Doering, W. v. E.; Roth, W. R., "The overlap of two allyl radicals or a four-centered transition state in the Cope rearrangement," Tetrahedron, 1962, 18, 67-74, DOI: 10.1016/0040-4020(62)80025-8.
  50. Goldstein, M. J.; Benzon, M. S., "Boat and Chair Transition States of 1,5-Hexadiene," J. Am. Chem. Soc., 1972, 94, 7147-7149, DOI: 10.1021/ja00775a046.
  51. Doering, W. v. E.; Toscano, V. G.; Beasley, G. H., "Kinetics of the Cope Rearrangement of 1,1-dideuteriohexa-1,5-diene," Tetrahedron, 1971, 27, 5299-5306, DOI: 10.1016/S0040-4020(01)91694-1.
  52. Cope, A. C.; Hofmann, C. M.; Hardy, E. M., "The Rearrangement of Allyl Groups in Three-Carbon Systems. II," J. Am. Chem. Soc., 1941, 63, 1852-1857, DOI: 10.1021/ja01852a014.
  53. Humski, K.; Malojcic, R.; Borcic, S.; Sunko, D. E., "Thermodynamic and Kinetic Secondary Isotope Effects in the Cope Rearrangement," J. Am. Chem. Soc., 1970, 92, 6534-6538, DOI: 10.1021/ja00725a026.
  54. Cohen, N.; Benson, S. W., "Estimation of Heats of Formation of Organic Compounds by Additivity Methods," Chem. Rev., 1993, 93, 2419-2438, DOI: 10.1021/cr00023a005.
  55. Russell, J. J.; Seetula, J. A.; Gutman, D., "Kinetics and thermochemistry of methyl, ethyl, and isopropyl. Study of the equilibrium R + HBr -> R-H + Br," J. Am. Chem. Soc., 1988, 110, 3092-3099, DOI: 10.1021/ja00218a017.
  56. Dewar, M. J. S.; Wade, L. E., "Possible Role of 1,4-Cyclohexylene Intermediates in Cope Rearrangements," J. Am. Chem. Soc., 1973, 95, 290-291, DOI: 10.1021/ja00782a078.
  57. Dewar, M. J. S.; Wade, L. E., Jr., "A Study of the Mechanism of the Cope Rearrangement," J. Am. Chem. Soc., 1977, 99, 4417-4424, DOI: ja00455a034.
  58. Wehrli, R.; Schmid, H.; Bellus, D.; Hansen, H. J., "The Mechanism of the Cope Rearrangement," Helv. Chim. Acta, 1977, 60, 1325-1356.
  59. Gajewski, J. J.; Conrad, N. D., "The Mechanism of the Cope Rearrangement," J. Am. Chem. Soc., 1978, 100, 6268-6269, DOI: 10.1021/ja00487a071.
  60. Gajewski, J. J.; Conrad, N. D., "Variable Transition-State Structure in the Cope Rearrangement as Deduced from Secondary Deuterium Kinetic Isotope Effects," J. Am. Chem. Soc., 1978, 100, 6269-6270, DOI: 10.1021/ja00487a072.
  61. Gajewski, J. J.; Conrad, N. D., "Variable Transition State Structure in 3,3-Sigmatropic Shifts from α-Secondary Deuterium Isotope Effects," J. Am. Chem. Soc., 1979, 101, 6693-6704, DOI: 10.1021/ja00516a035.
  62. Lutz, R. P.; Berg, H. A. J., "Kinetics of the Cope rearrangement of a 3,4-diphenylhexa-1,5-diene," J. Org. Chem., 1980, 45, 3915-3916, DOI: 10.1021/jo01307a038.
  63. Staroverov, V. N.; Davidson, E. R., "The Cope Rearrangement in Theoretical Retrospect," J. Mol. Struct. (THEOCHEM), 2001, 573, 81-89, DOI: 10.1016/S0166-1280(01)00536-X.
  64. Komornicki, A.; McIver, J. W. J., "Structure of transition states. 4. MINDO/2 study of rearrangements in the C6H10 system," J. Am. Chem. Soc., 1976, 98, DOI: 10.1021/ja00431a037.
  65. Dewar, M. J. S.; Ford, G. P.; McKee, M. L.; Rzepa, H. S.; Wade, L. E., "The Cope Rearrangement. MINDO/3 Studies of the Rearrangements of 1,5-Hexadiene and Bicyclo[2.2.0]hexane," J. Am. Chem. Soc., 1977, 99, 5069-5073, DOI: 10.1021/ja00457a029.
  66. Dewar, M. J. S.; Jie, C., "Mechanism of the Cope Rearrangement," J. Am. Chem. Soc., 1987, 109, 5893-5900, DOI: 10.1021/ja00254a001.
  67. Osamura, Y.; Kato, S.; Morokuma, K.; Feller, D.; Davidson, E. R.; Borden, W. T., "Ab Initio Calculation of the Transition State for the Cope Rearrangement," J. Am. Chem. Soc., 1984, 106, 3362-3363, DOI: 10.1021/ja00323a055.
  68. Hrovat, D. A.; Borden, W. T.; Vance, R. L.; Rondan, N. G.; Houk, K. N.; Morokuma, K., "Ab Initio Calculations of the Effects of Cyano Substituents on the Cope Rearrangement," J. Am. Chem. Soc., 1990, 112, 2018-2019, DOI: 10.1021/ja00161a067.
  69. Dupuis, M.; Murray, C.; Davidson, E. R., "The Cope Rearrangement Revisited," J. Am. Chem. Soc., 1991, 113, 9756-9759, DOI: 10.1021/ja00026a007.
  70. Hrovat, D. A.; Morokuma, K.; Borden, W. T., "The Cope Rearrangement Revisited Again. Results of Ab Initio Calculations byond the CASSCF Level," J. Am. Chem. Soc., 1994, 116, 1072-1076, DOI: 10.1021/ja00082a032.
  71. Kozlowski, P. M.; Dupuis, M.; Davidson, E. R., "The Cope Rearrangement Revisited with Multreference Perturbation Theory," J. Am. Chem. Soc., 1995, 117, 774-778, DOI: 10.1021/ja00107a021.
  72. Szalay, P. G.; Bartlett , R. J., "Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis," J. Chem. Phys., 1995, 103, 3600-3612, DOI: 10.1063/1.470243.
  73. Ventura, E.; Andrade do Monte, S.; Dallos, M.; Lischka, H., "Cope Rearrangement of 1,5-Hexadiene: Full Geometry Optimizations Using Analytic MR-CISD and MR-AQCC Gradient Methods," J. Phys. Chem. A., 2003, 107, 1175-1180, DOI: 10.1021/jp0259014.
  74. Kowalski, K.; Piecuch, P., "The Method of Moments of Coupled-Cluster Equations and the Renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) Approaches," J. Chem. Phys., 2000, 113, 18-35, DOI: 10.1063/1.481769.
  75. Jiao, H.; Schleyer, P. v. R., "The Cope Rearrangement Transition Structure is not Diradicaloid, but is it Aromatic?," Angew. Chem. Int. Ed. Engl., 1995, 34, 334-337, DOI: 10.1002/anie.199503341.
  76. Wiest, O.; Black, K. A.; Houk, K. N., "Density Functional Theory Isotope Effects and Activation Energies for the Cope and Claisen Rearrangements," J. Am. Chem. Soc. 1994, 116, 10336-10337, DOI: 10.1021/ja00101a078.
  77. Black, K. A.; Wilsey, S.; Houk, K. N., "Dissociative and Associative Mechanisms of Cope Rearrangements of Fluorinated 1,5-Hexadienes and 2,2'-Bis-methylenecyclopentanes," J. Am. Chem. Soc., 2003, 125, 6715-6724, DOI: 10.1021/ja021330h.
  78. McGuire, M. J.; Piecuch, P., "Balancing Dynamic and Nondynamic Correlation for Diradical and Aromatic Transition States: A Renormalized Coupled-Cluster Study of the Cope Rearrangement of 1,5-Hexadiene," J. Am. Chem. Soc., 2005, 127, 2608-2614, DOI: 10.1021/ja044734d.
  79. Shea, K. J.; Phillips, R. B., "Diastereomeric Transition States. Relative Energies of the Chair and Boat Reaction Pathways in the Cope Rearrangement," J. Am. Chem. Soc. 1980, 102, 3156-3162, DOI: 10.1021/ja00529a045.
  80. Dolbier Jr., W. R.; Palmer, K. W., "Effect of Terminal Fluorine Substitution on the Cope Rearrangement: Boat Versus Chair Transition State. Evidence for a very Significant Fluorine Steric Effect," J. Am. Chem. Soc., 1993, 115, 9349-9350, DOI: 10.1021/ja00073a085.
  81. Davidson, E. R., "How Robust is Present-Day DFT?," Int. J. Quantum Chem., 1998, 69, 241-245, DOI: 10.1002/(SICI)1097-461X(1998)69:3<241::AID-QUA3>3.0.CO;2-V.
  82. Staroverov, V. N.; Davidson, E. R., "Transition Regions in the Cope Rearrangement of 1,5-Hexadiene and Its Cyano Derivatives," J. Am. Chem. Soc., 2000, 122, 7377-7385, DOI: 10.1021/ja001259k.
  83. Borden, W. T.; Davidson, E. R., "The Importance of Including Dynamic Electron Correlation in ab Initio Calculations," Acc. Chem. Res., 1996, 29, 67-75, DOI: 10.1021/ar950134v.
  84. Andersson, K.; Malmqvist, P.-�.; Roos, B. O., "Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function," J. Chem. Phys., 1992, 96, 1218-1226, DOI: 10.1063/1.462209.
  85. Hirao, K., "Multireference Moeller-Plesset Method," Chem. Phys. Lett., 1992, 190, 374-380, DOI: 10.1016/0009-2614(92)85354-D.
  86. Doering, W. v. E.; Wang, Y., "Perturbation of Cope's Rearrangment: 1,3,5-Triphenylhexa-1,5-diene. Chameleonic or Centauric Transition Region?," J. Am. Chem. Soc., 1999, 121, 10112-10118, DOI: 10.1021/ja9908568.
  87. Doering, W. v. E.; Wang, Y., "CryptoCope Rearrangement of 1,3-Dicyano-5-phenyl-4,4-d2-hexa-2,5-diene. Chameleonic or Centauric?," J. Am. Chem. Soc., 1999, 121, 10967-10975, DOI: 10.1021/ja992137z.
  88. Hrovat, D. A.; Beno, B. R.; Lange, H.; Yoo, H.-Y.; Houk, K. N.; Borden, W. T., "A Becke3LYP/6-31G* Study of the Cope Rearrangements of Substituted 1,5-Hexadienes Provides Computational Evidence for a Chameleonic Transition State," J. Am. Chem. Soc., 1999, 121, 10529-10537, DOI: 10.1021/ja990476m.
  89. Hrovat, D. A.; Chen, J.; Houk, K. N.; T., B. W., "Cooperative and Competitive Substituent Effects on the Cope Rearrangements of Phenyl-Substituted 1,5-Hexadienes Elucidated by Becke3LYP/6-31G* Calculations," J. Am. Chem. Soc., 2000, 122, 7456-7460, DOI: 10.1021/ja000531n.
  90. Doering, W. v. E.; Birladeanu, L.; Sarma, K.; Teles, J. H.; Klaerner, F.-G.; Gehrke, J.-S., "Perturbation of the Degenerate, Concerted Cope Rearrangement by Two Phenyl Groups in Active Positions of (E)-1,4-Diphenylhexa-1,5-diene. Acceleration by High Pressure as Criterion of Cyclic Transition States," J. Am. Chem. Soc., 1994, 116, 4289-4297, DOI: 10.1021/ja00089a018.
  91. Doering, W. v. E.; Birladeanu, L.; Sarma, K.; Blaschke, G.; Scheidemantel, U.; Boese, R.; Benet-Bucholz, J.; Klarner, F.-G.; Gehrke, J.-S.; Zimny, B. U.; Sustmann, R.; Korth, H.-G., "A Non-Cope among the Cope Rearrangements of 1,3,4,6-Tetraphenylhexa-1,5-dienes," J. Am. Chem. Soc., 2000, 122, 193-203, DOI: 10.1021/ja993417h.
  92. Roth, W. R.; Lennartz, H. W.; Doering, W. v. E.; Birladeanu, L.; Guyton, C. A.; Kitagawa, T., "A Frustrated Cope Rearrangement: Thermal Interconversion of 2,6-Diphenylhepta-1,6-diene and 1,5-Diphenylbicyclo[3.2.0]heptane," J. Am. Chem. Soc., 1990, 112, 1722-1732, DOI: 10.1021/ja00161a011.
  93. Hrovat, D. A.; Borden, W. T., "A Simple Mathematical Model for the Cooperative and Competitive Substituent Effects Found in the Cope Rearrangements of Phenyl-Substituted 1,5-Hexadienes," J. Chem. Theory and Comput., 2005, 1, 87-94, DOI: 10.1021/ct049929q.
  94. Hayase, S.; Hrovat, D. A.; Borden, W. T., "A B3LYP Study of the Effects of Phenyl Substituents on 1,5-Hydrogen Shifts in 3-(Z)-1,3-Pentadiene Provides Evidence Against a Chameleonic Transition Structure," J. Am. Chem. Soc., 2004, 126, 10028-10034, DOI: 10.1021/ja048708r.
  95. Doering, W. v. E.; Keliher, E. J.; Zhao, X., "Perturbations by Phenyl on the 1,5-Hydrogen Shift in 1,3(Z)-Pentadiene. Another Chameleonic Transition Region?," J. Am. Chem. Soc., 2004, 126, 14206-14216, DOI: 10.1021/ja040106k.
  96. Nicolaou, K. C.; Dai, W.-M., "Chemistry and Biology of the Enediyne Anticancer Antibiotics," Angew. Chem. Int. Ed. Engl., 1991, 30, 1387-1416, DOI: 10.1002/anie.199113873.
  97. Enediyne Antibiotics as Antitumor Agents; Borders, D. B.; Doyle, T. W., Eds.; Marcel Dekker: New York, 1994.
  98. Edo, K.; Mizugaki, M.; Koide, Y.; Seto, H.; Furihata, K.; Otake, N.; Ishida, N., "The Structure of Neocarzionostatin Chromophore Possessing a Novel Bicyclo(7,3,0)dodecadiyne System," Tetrahedron Lett., 1985, 26, 331-334, DOI: 10.1016/S0040-4039(01)80810-8.
  99. Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B., "Calichemicin, a Novel Family of Antitumor Antibiotics 1. Chemistry and Partial Structure of Calichemicin," J. Am. Chem. Soc., 1987, 109, 3464-3466, http://dx.doi.org/10.1021/ja00245a050.
  100. Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegel, M. M.; Morton, G. O.; McGahren, W. J.; Borders, D. B., "Calichemicin, a Novel Family of Antitumor Antibiotics 2. Chemistry and Structure of Calichemicin," J. Am. Chem. Soc., 1987, 109, 3466-3468, DOI: 10.1021/ja00245a051.
  101. Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W., "Esperamicins, a Novel Class of Potent Antitumor Antibiotics. 2. Structure of Esperamicin X," J. Am. Chem. Soc., 1987, 109, 3461-3462, DOI: 10.1021/ja00245a048.
  102. Golik, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; W. Doyle, T. W., "Esperamicins, a Novel Class of Potent Antitumor Antibiotics. 3. Structures of Esperamicins A1, A2, and A1b," J. Am. Chem. Soc., 1987, 109, 3462-3464, DOI: 10.1021/ja00245a049.
  103. Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H., "Dynemicin A, a Novel Antibiotic with the Anthraquinone and 1,5-diyn-3-ene subunit," J. Antibiot., 1989, 42, 1449-1452.
  104. Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G. D.; Clardy, J., "Crystal and Molecular Structure of Dynemicin A: a Novel 1,5-diyn-3-ene Antitumor Antibiotic," J. Am. Chem. Soc., 1990, 112, 3715-3716, DOI: 10.1021/ja00165a097.
  105. Leet, J. E.; Schroeder, D. R.; Hofstead, S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr, S. E.; Doyle, T. W.; Matson, J. A., "Kedarcidin, a New Chromoprotein Antitumor Antibiotic: Structure Elucidation of Kedarcidin Chromophore," J. Am. Chem. Soc., 1992, 114, 7946-7948, DOI: 10.1021/ja00046a071.
  106. Leet, J. E.; Schroeder, D. R.; Langley, D. R.; Colson, K. L.; Huang, S.; Klohr, S. E.; Lee, M. S.; Golik, J.; Hofstead, S. J.; Doyle, T. W.; Matson, J. A., "Chemistry and Structure Elucidation of the Kedarcidin Chromophore," J. Am. Chem. Soc., 1993, 115, 8432-8443, DOI: 10.1021/ja00071a062.
  107. McDonald, L. A.; Capson, T. L.; Krishnamurthy, G.; Ding, W.-D.; Ellestad, G. A.; Bernan, V. S.; Maiese, W. M.; Lassota, P.; Discafini, C.; Kramer, R. A.; Ireland, C. M., "Namenamicin, a New Enediyne Antitumor Antibiotic from the Marine Ascidian Polysyncraton lithostrotum," J. Am. Chem. Soc., 1996, 118, 10898-10899, DOI: 10.1021/ja961122n.
  108. Yoshida, K.; Minami, Y.; Azuma, R.; Saeki, M.; Otani, T., "Structure and Cycloaromatization of a Novel Enediyne, C-1027 Chromophore," Tetrahedron Lett., 1993, 34, 2637-2640, DOI: 10.1016/S0040-4039(00)77644-1.
  109. Jones, R. R.; Bergman, R. G., "p-Benzyne. Generation as an Intermediate in a Thermal Isomerization Reaction and Trapping Evidence for the 1,4-Benzenediyl Structure," J. Am. Chem. Soc., 1972, 94, 660-661, DOI: 10.1021/ja00757a071.
  110. Bergman, R. G., "Reactive 1,4-Dehydroaromatics," Acc. Chem. Res., 1973, 6, 25-31, DOI: 10.1021/ar50061a004.
  111. Roth, W. R.; Hopf, H.; Horn, C., "1,3,5-Cyclohexatrien-1,4-diyl und 2,4-Cyclohexadien-1,4-diyl," Chem. Ber., 1994, 127, 1765-1779.
  112. Lockhart, T. P.; Comita, P. B.; Bergman, R. G., "Kinetic Evidence for the Formation of Discrete 1,4-Dehydrobenzene Intermediates. Trapping by Inter- and Intramolecular Hydrogen Atom Transfer and Observation of High-Temperature CIDNP," J. Am. Chem. Soc., 1981, 103, 4082-4090, DOI: 10.1021/ja00404a018.
  113. Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J.; Kumazawa, T., "Cyclic Conjugated Enediynes Related to Calicheamicins and Esperamicins: Calculations, Synthesis, and Properties," J. Am. Chem. Soc., 1988, 110, 4866-4868, DOI: 10.1021/ja00222a077.
  114. Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai, W. M., "Design, Synthesis, and Study of Simple Monocyclic Conjugated Enediynes. The 10-Membered Ring Enediyne Moiety of the Enediyne Anticancer Antibiotics," J. Am. Chem. Soc., 1992, 114, 7360-7371, DOI: 10.1021/ja00045a005.
  115. Andersson, K.; Roos, B. O., "Multiconfigurational Second-Order Perturbation Theory: A Test of Geometries and Binding Energies," Int. J. Quantum Chem., 1993, 45, 591-607, DOI: 10.1002/qua.560450610.
  116. Gr�fenstein, J.; Hjerpe, A. M.; Kraka, E.; Cremer, D., "An Accurate Description of the Bergman Reaction Using Restricted and Unrestricted DFT: Stability Test, Spin Density, and On-Top Pair Density," J. Phys. Chem. A., 2000, 104, 1748-1761, DOI: 10.1021/jp993122q.
  117. Koga, N.; Morokuma, K., "Comparison of Biradical Formation between Enediyne and Enyn-Allene. Ab Initio CASSCF and MRSDCI Study," J. Am. Chem. Soc., 1991, 113, 1907-1911, DOI: 10.1021/ja00006a006.
  118. Lindh, R.; Persson, B. J., "Ab Initio Study of the Bergman Reaction: The Autoaromatization of Hex-3-ene-1,5-diyne," J. Am. Chem. Soc., 1994, 116, 4963-4969, DOI: http://dx.doi.org/10.1021/ja00090a047.
  119. Lindh, R.; Lee, T. J.; Bernhardsson, A.; Persson, B. J.; Karlstroem, G., "Extended ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet o-, m-, and p-Benzynes," J. Am. Chem. Soc., 1995, 117, 7186-7194, DOI: 10.1021/ja00132a019.
  120. Kraka, E.; Cremer, D., "CCSD(T) Investigation of the Bergman Cyclization of Enediyne. Relative Stability of o-, m-, and p-Didehydrobenzene," J. Am. Chem. Soc., 1994, 116, 4929-4936, DOI: 10.1021/ja00090a043.
  121. Cramer, C. J., "Bergman, Aza-Bergman, and Protonated Aza-Bergman Cyclizations and Intermediate 2,5-Arynes: Chemistry and Challenges to Computation," J. Am. Chem. Soc. 1998, 120, 6261-6269, DOI: 10.1021/ja9806579.
  122. Schreiner, P. R., "Monocyclic Enediynes: Relationships between Ring Sizes, Alkyne Carbon Distances, Cyclization Barriers, and Hydrogen Abstraction Reactions. Singlet-Triplet Separations of Methyl-Substituted p-Benzynes," J. Am. Chem. Soc., 1998, 120, 4184-4190, DOI: 10.1021/ja973591a.
  123. Chen, W.-C.; Chang, N.-y.; Yu, C.-h., "Density Functional Study of Bergman Cyclization of Enediynes," J. Phys. Chem. A., 1998, 102, 2584-2593, DOI: 10.1021/jp973261c.
  124. McMahon, R. J.; Halter, R. J.; Fimmen, R. L.; Wilson, R. J.; Peebles, S. A.; Kuczkowski, R. L.; Stanton, J. F., "Equilibrium Structure of cis-Hex-3-ene-1,5-diyne and Relevance to the Bergman Cyclization," J. Am. Chem. Soc., 2000, 122, 939-949, DOI: 10.1021/ja9934908.
  125. Galbraith, J. M.; Schreiner, P. R.; Harris, N.; Wei, W.; Wittkopp, A.; Shaik, S., "A Valence Bond Study of the Bergman Cyclization: Geometric Features, Resonance Energy, and Nucleus-Independent Chemical Shift (NICS) Values," Chem. Eur. J., 2000, 6, 1446-1454, DOI: 10.1002/(SICI)1521-3765(20000417)6:8<1446::AID-CHEM1446>3.0.CO;2-I.
  126. Stahl, F.; Moran, D.; Schleyer, P. v. R.; Prall, M.; Schreiner, P. R., "Aromaticity of the Bergman, Myers-Saito, Schmittel, and Directly Related Cyclizations of Enediynes," J. Org. Chem., 2002, 67, 1453-1461, DOI: 10.1021/jo015728s.
  127. Nicolaou, K. C.; Smith, A. L.; Yue, E. W., "Chemistry and Biology of Natural and Designed Enediynes," Proc. Nat. Acad. Sci. 1993, 90, 5881-5888, DOI: 10.1073/pnas.90.13.5881.
  128. Magnus, P.; Carter, P. A., "A Model for the Proposed Mechanism of Action of the Potent Antitumor Antibiotic Esperamicin A1," J. Am. Chem. Soc., 1988, 110, 1626-1628, DOI: 10.1021/ja00213a048.
  129. Magnus, P.; Lewis, R. T.; Huffman, J. C., "Synthesis of a Remarkably Stable Bicyclo[7.3.1]diynene Esperamicin A1/Calicheamicin γ System. Structural Requirements for Facile Formation of a 1,4-Diyl," J. Am. Chem. Soc., 1988, 110, 6921-6923, DOI: 10.1021/ja00228a071.
  130. Magnus, P.; Fortt, S.; Pitterna, T.; Snyder, J. P., "Synthetic and Mechanistic Studies on Esperamicin A1 and Calichemicin γ1. Molecular Strain Rather than π-Bond Proximity Determines the Cycloaromatization Rates of Bicyclo[7.3.1]enediynes," J. Am. Chem. Soc., 1990, 112, 4986-4987, DOI: 10.1021/ja00168a068.
  131. Snyder, J. P., "The Cyclization of Calichemicin-Esperamicin Analogs: a Predictive Biradicaloid Transition State," J. Am. Chem. Soc., 1989, 111, 7630-7632, DOI: 10.1021/ja00201a063.
  132. Snyder, J. P., "Monocyclic Enediyne Collapse to 1,4-Diyl Biradicals: a Pathway Under Strain Control," J. Am. Chem. Soc., 1990, 112, 5367-5369, DOI: 10.1021/ja00169a064.
  133. Gaffney, S. M.; Capitani, J. F.; Castaldo, L.; Mitra, A., "Critical Distance Model for the Energy of Activation of the Bergman Cyclization of Enediynes," Int. J. Quantum Chem., 2003, 95, 706-712, DOI: 10.1002/qua.10689.
  134. Tuttle, T.; Kraka, E.; Cremer, D., "Docking, Triggering, and Biological Activity of Dynemicin A in DNA: A Computational Study," J. Am. Chem. Soc., 2005, 127, 9469-9484, DOI: 10.1021/ja046251f.
  135. Myers, A. G.; Kuo, E. Y.; Finney, N. S., "Thermal Generation of α,3-Dehydrotoluene from (Z)-1,2,4-Heptatrien-6-yne," J. Am. Chem. Soc., 1989, 111, 8057-8059, DOI: 10.1021/ja00202a079.
  136. Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I., "Biradical Formation from Acyclic Conjugated Eneyne-Allene System Related to Neocarzinostatin and Esperamicin-Calichemicin," Tetrahedron Lett. 1989, 30, 4995-4998, DOI: 10.1016/S0040-4039(01)80564-5.
  137. Myers, A. G.; Proteau, P. J., "Evidence for Spontaneous, Low-Temperature Biradical Formation from a Highly Reactive Neocarzinostatin Chromophore-Thiol Conjugate," J. Am. Chem. Soc., 1989, 111, 1146-1147, DOI: 10.1021/ja00185a064.
  138. Schmittel, M.; Strittmatter, M.; Kiau, S., "Switching from the Myers Reaction to a New Thermal Cyclization Mode in Enyne-allenes," Tetrahedron Lett., 1995, 36, 4975-4978, DOI: 10.1016/0040-4039(95)00937-8.
  139. Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M., "A Suprising Switch from the Myers-Saito Cyclization toa Novel Biradical Cyclization in Enyne-Allenes: Formal Diels-Alder and Ene Reactions with High Synthetic Potetnial," Chem. Eur. J. 1997, 3, 807-816.
  140. Nicolaou, K. C.; Maligres, P.; Shin, J.; De Leon, E.; Rideout, D., "DNA-cleavage and antitumor activity of designed molecules with conjugated phosphine oxide-allene-ene-yne functionalities," J. Am. Chem. Soc., 1990, 112, 7825-7826, DOI: 10.1021/ja00177a070.
  141. Schmittel, M.; Kiau, S.; Strittmatter, M., "Steric Effects in Enyne-Allene Thermolyses: Switch from the Myers-Saito Reaction to the C2---C6-Cyclization and DNA Strand Cleavage," Tetrahedron Lett. 1996, 37, 7691-7694, DOI: 10.1016/0040-4039(96)01758-3.
  142. Engels, B.; Hanrath, M., "A Theoretical Comparison of Two Competing Diradical Cyclizations in Enyne-Allenes: The Myers-Saito and the Novel C2-C6 Cyclization," J. Am. Chem. Soc., 1998, 120, 6356-6361, DOI: http://dx.doi.org/10.1021/ja973051d.
  143. Schreiner, P. R.; Prall, M., "Myers-Saito versus C2-C6 ("Schmittel") Cyclizations of Parent and Monocyclic Enyne-Allenes: Challenges to Chemistry and Computation," J. Am. Chem. Soc., 1999, 121, 8615-8627, DOI: 10.1021/ja991282+.
  144. Chen, W.-C.; Zou, J.-W.; Yu, C.-H., "Density Functional Study of the Ring Effect on the Myers-Saito Cyclization and a Comparison with the Bergman Cyclization," J. Org. Chem.. 2003, 68, 3663-3672, DOI: 10.1021/jo0267246.
  145. Wenthold, P. G.; Lipton, M. A., "A Density Functional Molecular Orbital Study of the C2-C7 and C2-C6 Cyclization Pathways of 1,2,4-Heptatrien-6-ynes. The Role of Benzannulation," J. Am. Chem. Soc., 2000, 122, 9265-9270, DOI: 10.1021/ja002050+.
  146. Cramer, C. J.; Kormos, B. L.; Seierstad, M.; Sherer, E. C.; Winget, P., "Biradical and Zwitterionic Cyclizations of Oxy-Substituted Enyne-Allenes," Org. Lett., 2001, 3, 1881-1884, DOI: 10.1021/ol015935e.
  147. Cremeens, M. E.; Hughes, T. S.; Carpenter, B. K., "Mechanistic Studies on the Cyclization of (Z)-1,2,4-Heptatrien-6-yne in Methanol: A Possible Nonadiabatic Thermal Reaction," J. Am. Chem. Soc., 2005, 127, 6652-6661, DOI: 10.1021/ja0445443.
  148. Engels, B.; Lennartz, C.; Hanrath, M.; Schmittel, M.; Strittmatter, M., "Regioselectivity of Biradical Cyclizations of Enyne-Allenes: Influence of Substituents on the Switch from the Myers-Saito to the Novel C2-C6 Cyclization," Angew. Chem. Int. Ed., 1998, 37, 1960-196, DOI: 10.1002/(SICI)1521-3773(19980803)37:13/14<1960::AID-ANIE1960>3.0.CO;2-3.
  149. Schmittel, M.; Steffen, J.-P.; Maywald, M.; Engels, B.; Helten, H.; Musch, P., "Ring Size Effects in the C2-C6 Biradical Cyclisation of Enyne-allenes and the Relevance for Neocarzinostatin," J. Chem. Soc., Perkin Trans. 2, 2001, 1331-1339, DOI: 10.1039/b102380m.
  150. Cramer, C. J.; Squires, R. R., "Quantum Chemical Characterization of the Cyclization of the Neocarzinostatin Chromophore to the 1,5-Didehydroindene Biradical," Org. Lett., 1999, 1, 215-218, DOI: 10.1021/ol990014d.
  151. Musch, P. W.; Engels, B., "Which Structural Elements Are Relevant for the Efficacy of Neocarzinostatin?," Angew. Chem. Int. Ed., 2001, 40, 3833-3836, DOI: 10.1002/1521-3773(20011015)40:20<3833::AID-ANIE3833>3.0.CO;2-N.
  152. Ross, J. A.; Seiders, R. P.; Lemal, D. M., "An Extraordinarily Facile Sulfoxide Automerization," J. Am. Chem. Soc., 1976, 98, 4325-4327, DOI: 10.1021/ja00430a060.
  153. Birney, D. M., "Further Pseudopericyclic Reactions: An ab Initio Study of the Conformations and Reactions of 5-Oxo-2,4-pentadienal and Related Molecules," J. Org. Chem., 1996, 61, 243-251, DOI: 10.1021/jo951716t.
  154. Rodr�guez-Otero, J.; Cabaleiro-Lago, E. M., "Criteria for the Elucidation of the Pseudopericyclic Character of the Cyclization of (Z)-1,2,4,6-Heptatetraene and Its Heterosubstituted Analogues: Magnetic Properties and Natural Bond Orbital Analysis," Chem. Eur. J., 2003, 9, 1837-1843, DOI: 10.1002/chem.200390211.
  155. Birney, D. M.; Wagenseller, P. E., "An ab initio Study of the Reactivity of Formylketene. Pseudopericyclic Reactions Revisited," J. Am. Chem. Soc., 1994, 116, 6262-6270, DOI: 10.1021/ja00093a028.
  156. Birney, D. M.; Xu, X.; Ham, S.; Huang, X., "Chemoselectivity in the Reactions of Acetylketene and Acetimidoylketene: Confirmation of Theoretical Predictions," J. Org. Chem., 1997, 62, 7114-7120, DOI: 10.1021/jo971083d.
  157. Ham, S.; Birney, D. M., "Imidoylketene: An ab Initio Study of Its Conformations and Reactions," J. Org. Chem., 1996, 61, 3962-3968, DOI: 10.1021/jo952229g.
  158. Wagenseller, P. E.; Birney, D. M.; Roy, D., "On the Development of Aromaticity in Cycloadditions: Ab Initio Transition Structures for the Trimerization of Acetylene and for the Addition of Ethylene and Acetylene to Formylketene," J. Org. Chem., 1995, 60, 2853-2859, DOI: 10.1021/jo00114a040.
  159. Birney, D. M., "Electrocyclic Ring Openings of 2-Furylcarbene and Related Carbenes: A Comparison between Pseudopericyclic and Coarctate Reactions," J. Am. Chem. Soc., 2000, 122, 10917-10925, DOI: 10.1021/ja0020005.
  160. Zhou, C.; Birney, D. M., "Experimental and Theoretical Studies of the Dimerizations of Imidoylketenes," J. Org. Chem., 2004, 69, 86-94, DOI: 10.1021/jo035128o.
  161. de Lera, A. R.; Alvarez, R.; Lecea, B.; Torrado, A.; P. Coss�o, F. P., "On the Aromatic Character of Electrocyclic and Pseudopericyclic Reactions: Thermal Cyclization of (2Z)-Hexa-2,4-5-trienals and Their Schiff Bases," Angew. Chem. Int. Ed., 2001, 40, 557-561, DOI: 10.1002/1521-3773(20010202)40:3<557::AID-ANIE557>3.0.CO;2-T.
  162. Rodr�guez-Otero, J.; Cabaleiro-Lago, E. M., "Electrocyclization of (Z)-1,2,4,6-Heptatetraene and its Heterosubstituted Analogues: Pericyclic or Pseudopericyclic?," Angew. Chem. Int. Ed., 2002, 41, 1147-1150, DOI: 10.1002/1521-3773(20020402)41:7<1147::AID-ANIE1147>3.0.CO;2-J.
  163. de Lera, A. R.; Cossio, F. P., "Reply," Angew. Chem. Int. Ed., 2002, 41, 1150-1152, DOI: 10.1002/1521-3773(20020402)41:7<1150::AID-ANIE1150>3.0.CO;2-M.
  164. Birney, D. M., personal communication.
  165. DePuy, C. H.; Schnack, L. G.; Hausser, J. W., "Chemistry of Cyclopropanols. IV. The Solvolysis of Cycopropyl Tosylates," J. Am. Chem. Soc., 1966, 88, 3343-3346, DOI: 10.1021/ja00966a029.
  166. Schleyer, P. v. R.; Su, T. M.; Saunders, M.; Rosenfeld, J. C., "Stereochemistry of allyl cations from the isomeric 2,3-dimethylcyclopropyl chlorides. Stereomutations of allyl cations," J. Am. Chem. Soc., 1969, 91, 5174-5176, DOI: 10.1021/ja01046a049.
  167. DePuy, C. H., "The Chemistry of Cyclopropanols," Acc. Chem. Res., 1968, 1, 33-41, DOI: 10.1021/ar50002a001.
  168. Faza, O. N.; Lopez, C. S.; Alvarez, R.; de Lera, A. R., "The Woodward-Hoffmann-De Puy Rule Revisited," Org. Lett. 2004, 6, 905-908, DOI: 10.1021/ol036449p.
  169. Criegee, R.; Seebach, D.; Winter, R. E.; Boerretzen, B.; Brune, H. A., "Cyclobutenes. XXI. Valency isomerization of cyclobutenes," Chem. Ber. 1965, 98, 2339-2352.
  170. Dolbier, W. R., Jr.; Koroniak, H.; Burton, D. J.; Bailey, A. R.; Shaw, G. S.; Hansen, S. W., "Remarkable, Contrasteric, Electrocyclic Ring Opening of a Cyclobutene," J. Am. Chem. Soc., 1984, 106, 1871-1872, DOI: 10.1021/ja00318a071.
  171. Kirmse, W.; Rondan, N. G.; Houk, K. N., "Stereoselective Substituent Effects on Conrotatory Electrocyclic Reactions of Cyclobutenes," J. Am. Chem. Soc., 1984, 106, 7989-7991, DOI: 10.1021/ja00337a067.
  172. Rondan, N. G.; Houk, K. N., "Theory of Stereoselection in Conrotatory Electrocyclic Reactions of Substituted Cyclobutenes," J. Am. Chem. Soc., 1985, 107, 2099-2111, DOI: 10.1021/ja00293a046.
  173. Dolbier, W. R., Jr.; Koroniak, H.; Houk, K. N.; Sheu, C., "Electronic Control of Stereoselectivities of Electrocyclic Reactions of Cyclobutenes: A Triumph of Theory in the Prediction of Organic Reactions," Acc. Chem. Res., 1996, 20, 471-477, DOI: 10.1021/ar9501986.
  174. Lee, P. S.; Zhang, X.; Houk, K. N., "Origins of Inward Torquoselectivity by Silyl Groups and Other σ-Acceptors in Electrocyclic Reactions of Cyclobutenes," J. Am. Chem. Soc., 2003, 125, 5072-5079, DOI: 10.1021/ja0287635.
  175. Rudolf, K.; Spellmeyer, D. C.; Houk, K. N., "Prediction and Experimental Verification of the Stereoselective Electrocyclization of 3-Formylcyclobutene," J. Org. Chem., 1987, 52, 3708-3710, 10.1021/jo00392a047.
  176. Buda, A. B.; Wang, Y.; Houk, K. N., "Acid-Base-Controlled Torquoselectivity: Theoretical Predictions of the Stereochemical Course of the Electrocyclic Reactions of Cyclobutene-3-Carboxylic Acid and the Conjugate Base and Acid," J. Org. Chem., 1989, 54, 2264-2266, DOI: 10.1021/jo00271a003.
  177. Niwayama, S.; Kallel, E. A.; Spellmeyer, D. C.; Sheu, C.; Houk, K. N., "Substituent Effects on Rates and Stereoselectivities of Conrotatory Electrocyclic Reactions of Cyclobutenes. A Theoretical Study," J. Org. Chem., 1996, 61, 2813-2825, DOI: 10.1021/jo950884i.
  178. Murakami, M.; Miyamoto, Y.; Ito, Y., "A Silyl Substituent Can Dictate a Concerted Electrocyclic Pathway: Inward Torquoselectivity in the Ring Opening of 3-Silyl-1-cyclobutene," Angew. Chem. Int. Ed., 2001, 40, 189-190, DOI: 10.1002/1521-3773(20010105)40:1<189::AID-ANIE189>3.0.CO;2-L.
  179. Murakami, M.; Usui, I.; Hasegawa, M.; Matsuda, T., "Contrasteric Stereochemical Dictation of the Cyclobutene Ring-Opening Reaction by a Vacant Boron p Orbital," J. Am. Chem. Soc., 2005, 127, 1366-1367, DOI: 10.1021/ja043979n.
  180. Houk, K. N.; Spellmeyer, D. C.; Jefford, C. W.; Rimbault, C. G.; Wang, Y.; Miller, R. D., "Electronic Control of the Stereoselectivities of Electrocyclic Reaction of Cyclobutenes against Incredible Steric Odds," J. Org. Chem., 1988, 53, 2125-2127, DOI: 10.1021/jo00244a058.
  181. Niwayama, S.; Houk, K. N., "Competition between Ester and Formyl Groups for Control of Torquoselectivity in Cyclobutene Electrocyclic Reactions," Tetrahedron Lett., 1992, 33, 883-886, DOI: 10.1016/S0040-4039(00)91566-1.
  182. Niwayama, S.; Wang, Y.; Houk, K. N., "The Torquoselectivity of Electrocyclic Reactions of 3-Donor-3-Acceptor-Substituted Cyclobutenes," Tetrahedron Lett., 1995, 36, 6201-6204, DOI: 10.1016/0040-4039(95)01249-H.
  183. Murakami, M.; Hasegawa, M., "Synthesis and Thermal Ring Opening of trans-3,4-Disilylcyclobutene," Angew. Chem. Int. Ed., 2004, 43, 4874-4876, DOI: 10.1002/anie.200460144.
  184. Kallel, E. A.; Houk, K. N., "Theoretical Predictions of Torquoselectivity in Pentadienyl Cation Electrocyclizations," J. Org. Chem., 1989, 54, 6006-6008, DOI: 10.1021/jo00287a004.
  185. Smith, D. A.; Ulmer, C. W., II, "Theoretical studies of the Nazarov cyclization 3. Torquoselectivity and hyperconjugation in the Nazarov cyclization. The effects of inner versus outer β-methyl and β-silyl groups," J. Org. Chem., 1993, 58, 4118-4121, DOI: 10.1021/jo00067a054.
  186. Harmata, M.; Schreiner, P. R.; Lee, D. R.; Kirchhoefer, P. L., "Combined Computational and Experimental Studies of the Mechanism and Scope of the Retro-Nazarov Reaction," J. Am. Chem. Soc., 2004, 126, 10954-10957, DOI: 10.1021/ja048942h.
  187. Evanseck, J. D.; Thomas IV, B. E.; Spellmeyer, D. C.; Houk, K. N., "Transition Structures of Thermally Allowed Disrotatory Electrocyclizations. The Prediction of J. Org. Chem., 1995, 60, 7134-7141, 10.1021/jo00127a016.
  188. Luo, L.; Bartberger, M. D.; Dolbier Jr., W. R., "Kinetic and Computational Studies of a Novel Pseudopericyclic Electrocyclization. The First Evidence for Toquoselectivity in 6-π System," J. Am. Chem. Soc., 1997, 119, 12366-12367, DOI: 10.1021/ja972701a.
  189. Thomas IV, B. E.; Evanseck, J. D.; Houk, K. N., "Electrocyclic reactions of 1-substituted 1,3,5,7-octatetraenes. An ab initio molecular orbital study of torquoselectivity in eight-electron electrocyclizations," J. Am. Chem. Soc., 1993, 115, 4165-4169, DOI: 10.1021/ja00063a039.
  190. Allen, J. G.; Hentemann, M. F.; Danishefsky, S. J., "A Powerful o-Quinone Dimethide Strategy for Intermolecular Diels-Alder Cycloadditions," J. Am. Chem. Soc., 2000, 122, 571-575, DOI: 10.1021/ja993627u.
  191. Paquette, L. A.; Feng Geng, F., "A Highly Abbreviated Synthesis of Pentalenene by Means of the Squarate Ester Cascade," Org. Lett., 2002, 4, 4547-4549, DOI: 10.1021/ol020208k.
  192. Murakami, M.; Miyamoto, Y.; Ito, Y., "Stereoselective Synthesis of Isomeric Functionalized 1,3-Dienes from Cyclobutenones," J. Am. Chem. Soc., 2001, 123, 6441-6442, DOI: 10.1021/ja010639i.