About the Book
Citations
Molecules
Chapter 1 Citations
- Cramer, C. J. Essential of Computational Chemistry: Theories and Models; John
Wiley & Sons: New York, 2002.
- Jensen, F. Introduction to Computational Chemistry;
John Wiley & Sons: Chichester, England, 1999.
- Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure
Theory; Dover: Mineola, N.Y., 1996.
- Born, M.; Oppenheimer, R., "Zur Quantentheorie der Molekeln," Ann. Phys., 1927,
84, 457-484.
- Roothaan, C. C. J., "New Developments in Molecular Orbital Theory,"
Rev. Mod. Phys., 1951, 23, 69-89, DOI:
10.1103/RevModPhys.23.69.
- Boys, S. F., "Electronic Wave Functions. I. A General Method of Calculation for the
Stationary States of Any Molecular System," Proc. Roy. Soc., 1950, A200, 542-554,
DOI: 10.1098/rspa.1950.0036.
- Ditchfield, R.; Hehre, W. J.; Pople, J. A., "Self-Consistent Molecular-Orbital Methods. IX. An
Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules," J. Chem. Phys.,
1971, 54, 724-728, DOI: 10.1063/1.1674902.
- Hehre, W. J.; Ditchfield, R.; Pople, J. A., "Self?Consistent Molecular Orbital Methods. XII.
Further Extensions of Gaussian?Type Basis Sets for Use in Molecular Orbital Studies of Organic
Molecules," J. Chem. Phys., 1972, 56, 2257-2261, DOI: 10.1063/1.1677527.
- Dunning, T. H., Jr., "Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The
Atoms Boron Through Neon and Hydrogen," J. Chem. Phys., 1989, 90, 1007-1023,
DOI: 10.1063/1.456153.
- Woon, D. E.; Dunning, T. H., Jr., "Gaussian Basis Sets for Use in Correlated
Molecular Calculations. III. The Atoms Aluminum Through Argon," J. Chem. Phys., 1993,
98, 1358-1371, DOI: 10.1063/1.464303.
- Woon, D. E.; Dunning, T. H., Jr., "Gaussian Basis Sets for Use in Correlated Molecular
Calculations. V. Core-Valence Basis Sets for Boron Through Neon," J. Chem. Phys.,
103, 4572-4585, DOI: 10.1063/1.470645.
- "EMSL Gaussian Basis Set Order Form," Molecular Science Computing Facility, E. M. S. L.;
Pacific National Laboratory. http://www.emsl.pnl.gov/forms/basisform.html
A new interface is now offered as the Basis Set Exchange at https://bse.pnl.gov/bse/portal;
see the post on my blog.
- Sherrill, C. D.; Schaefer, H. F., III., "The Configuration Interaction
Method: Advances in Highly Correlated Approaches," Adv. Quantum Chem., 1999,
34, 143-269,
- Brillouin, L., Actualities Sci. Ind, 1934, 71, 159,
- Langhoff, S. R.; Davidson, E. R., "Configuration Interaction Calculations on the
Nitrogen Molecule," Int. J. Quantum Chem., 1974, 8, 61-72, DOI:
10.1002/qua.560080106.
- M�ller, C.; Plesset, M. S., "Note on an Approximation
Treatment for Many-Electron Systems," Phys. Rev., 1934, 48, 618-622,
DOI: 10.1103/PhysRev.46.618.
- Cizek, J., "On the Correlation Problem in Atomic and Molecular Systems.
Calculation of Wavefunction Components in Ursell-Type
Expansion Using Quantum-Field Theoretical Methods," J. Chem. Phys., 1966, 45,
4256-4266, DOI: 10.1063/1.1727484.
- Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.,
"A Fifth-order Perturbation Comparison of Electron Correlation
Theories," Chem. Phys. Lett., 1989, 157, 479-483, DOI:
10.1016/S0009-2614(89)87395-6.
- Pople, J. A.; Head-Gordon, M.; Raghavachari, K.,
"Quadratic Configuration Interaction. A General Technique for Determining
Electron Correlation Energies," J. Chem. Phys., 1987, 87, 5968-5975, DOI:
10.1063/1.453520.
- Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari,
K.; Trucks, G. W., "Size-Consistent Brueckner
Theory Limited to Double Substitutions," Chem. Phys. Lett., 1989, 164, 185-192,
DOI: 10.1016/0009-2614(89)85013-4.
- Shepard, R., "The Multiconfiguration Self-Consistent
Field Method," Adv. Chem. Phys., 1987, 69, 63-200.
- Roos, B., "The Complete Active Space Self-Consistent Field Method and its
Applications in Electronic Structure Calculations," Adv. Chem. Phys., 1987, 69,
399-445.
- Andersson, K.; Malmqvist, P.-�.; Roos,
B. O., "Second-Order Perturbation Theory with a Complete Active Space
Self-Consistent Field Reference Function," J. Chem. Phys., 1992, 96, 1218-1226,
DOI: 10.1063/1.462209.
- Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.;
Curtiss, L. A., "Gaussian-1 Theory: A General Procedure for Prediction of
Molecular Energies," J. Chem. Phys.
1989, 90, 5622-5629, DOI: 10.1063/1.456415.
- Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople,
J. A., "Gaussian-2 Theory for Molecular Energies of First- and Second-Row
Compounds," J. Chem. Phys., 1991, 94, 7221-7230, DOI:
10.1063/1.460205.
- Curtiss, L. A.; Raghavachari, K.; Pople, J. A., "Gaussian-2 Theory Using
Reduced M�ller?Plesset Orders," J. Chem. Phys., 1993, 98, 1293-1298, DOI:
10.1063/1.464297.
- Curtiss, L. A.; J. Chem. Phys., 1998, 109, 7764-7776, DOI: 10.1063/1.477422.
- Montgomery, J. A., Jr.; Frisch , M. J.; Ochterski, J. W.; Petersson,
G. A., "A Complete Basis Set Model Chemistry. VI. Use of Density
Functional Geometries and Frequencies," J. Chem. Phys., 1999, 110, 2822-2827,
DOI: 10.1063/1.477924.
- Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson,
G. A., "A Complete Basis Set Model Chemistry. VII. Use of the Minimum
Population Localization Method," J. Chem. Phys., 2000, 112, 6532-6542,
DOI: 10.1063/1.481224.
- Martin, J. M. L.; de Oliveira, G., "Towards Standard Methods for Benchmark Quality ab Initio
Thermochemistry ? W1 and W2 Theory," J. Chem. Phys., 1999, 111, 1843-1856, DOI:
10.1063/1.479454.
- Martin, J. M. L., "Computational Thermochemistry: A Brief Overview
of Quantum Mechanical Approaches," Ann. Rep. Comput. Chem., 2005, 1, 31-43.
- Cs�sz�r, A. G.; Allen, W. D.; Schaefer, H. F., III, "In Pursuit of the ab Initio Limit for Conformational Energy Prototypes,"
J. Chem. Phys., 1998, 108, 9751-9764, DOI: 10.1063/1.476449.
- Gao, J., "Methods and Applications of Combined
Quantum Mechanical and Molecular Mechanical Potentials," Rev. Comput. Chem.
1996, 7, 119-185.
- Gao, J.; Truhlar, D. G., "Quantum Mechanical Methods
for Enzyme Kinetics," Ann. Rev. Phys. Chem., 2002, 53, 467-505, DOI:
10.1146/annurev.physchem.53.091301.150114.
- Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma,
K., "ONIOM: A Multilayered Integrated MO + MM Method for Geometry
Optimizations and Single Point Energy Predictions. A Test for Diels-Alder
Reactions and Pt(P(t-Bu)3)2
+ H2 Oxidative Addition," J. Phys. Chem., 1996, 100, 19357-19363,
DOI: 10.1021/jp962071j.
- Hohenberg, P.; Kohn, W., "Inhomogeneous Electron Gas," Phys. Rev., 1964,
136, B864?B871, DOI: 10.1103/PhysRev.136.B864.
- Kohn, W.; Sham, L. J., "Self-Consistent Equations Including Exchange and Correlation
Effects," Phys. Rev., 1965, 140, A1133?A1138, DOI: 10.1103/PhysRev.140.A1133.
- Vosko, S. H.; Wilk, L.; Nusair, M., "Accurate Spin-Dependent Electron Liquid Correlation Energies for
Local Spin Density Calculations: a Critical Analysis," Can. J. Phys., 1980, 58, 1200-1211.
- Koch, W.; Holthaisen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
- Becke, A. D., "Density-Functional Exchange-Energy Approximation with Correct
Asymptotic Behavior," Phys. Rev. A
1988, 38, 3098-3100, DOI: 10.1103/PhysRevA.38.3098.
- Lee, C.; Yang, W.; Parr, R. G., "Development of the Colle-Salvetti
Correlation-Energy Formula into a Functional of the Electron Density," Phys. Rev. B, 1988,
37, 785?789, DOI: 10.1103/PhysRevB.37.785.
- Perdew, J. P.; Wang, Y., "Accurate and Simple Analytic Representation of the
Electron-Gas Correlation Energy," Phys. Rev. B, 1992, 45, 13244-13249, DOI: 10.1103/PhysRevB.45.13244.
- Becke, A. D., "Density-Functional Thermochemistry. III.
The Role of Exact Exchange," J. Chem. Phys., 1993, 98, 5648-5652, DOI: 10.1063/1.464913.
- Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., "Ab Initio Calculation of
Vibrational Absorption and Circular Dichroism Spectra Using Density Functional
Force Fields," J. Phys. Chem., 1994, 98, 11623-11627, DOI:
10.1021/j100096a001.
- Zhao, Y.; Truhlar, D. G., "Hybrid Meta Density Functional Theory
Methods for Thermochemistry, Thermochemical
Kinetics, and Noncovalent Interactions: The MPW1B95
and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions,"
J. Phys. Chem. A, 2004, 108, 6908-6918, DOI: 10.1021/jp048147q.
- Zhao, Y.; Truhlar, D. G., "Design of Density Functionals That
Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded
Interactions," J. Phys. Chem. A, 2005, 109, 5656-5667, DOI: 10.1021/jp050536c.
- Zhao, Y.; Schultz, N. E.; Truhlar, D. G., "Design of Density Functionals by
Combining the Method of Constraint Satisfaction with Parametrization
for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions," J. Chem. Theory Comput.
2006, 2, 364-382, DOI: 10.1021/ct0502763.
- Schlegel, H. B., "Exploring Potential Energy Surfaces for Chemical Reactions: An Overview
of Some Practical Methods," J. Comput. Chem., 2003,
24, 1514-1527, DOI: 10.1002/jcc.10231.
- Gonzalez, C.; Schlegel, H. B., "Reaction Path Following in Mass-Weighted Internal
Coordinates," J. Phys. Chem., 1990, 94, 5523-5527, DOI: 10.1021/j100377a021.
- Bachrach, S. M., "Population Analysis and Electron Densities from Quantum Mechanics," In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH Publishers: New
York, 1994; Vol. 5, 171-228.
- Mulliken, R. S., "Electronic Population Analysis on LCAO-MO Molecular Wave
Functions. I," J. Chem. Phys., 1955, 23, 1833-1840, DOI: 10.1063/1.1740588.
- Cusachs, L. C.; Politzer, P., "On the Problem of Defining
the Charge on an Atom in a Molecule," Chem.
Phys. Lett., 1968, 1, 529-531, DOI: 10.1016/0009-2614(68)80010-7.
- L�wdin, P.-O., "On the Orthogonality Problem," Adv. Quantum Chem., 1970,
5, 185-199.
- Reed, A. E.; Weinstock, R. B.; Weinhold, F., "Natural Population Analysis," J.
Chem. Phys., 1985, 83, 735-746, DOI: 10.1063/1.449486.
- Bader, R. F. W. Atoms in Molecules: A Quantum Theory;
Clarendon Press: Oxford, UK, 1990.
- Barone, V., "Anharmonic Vibrational Properties by a
Fully Automated Second-Order Perturbative Approach," J. Chem. Phys., 2005, 122, 014108,
DOI: 10.1063/1.1824881.
- Adamo, C.; Barone, V., "Exchange Functionals with
Improved Long-Range Behavior and Adiabatic Connection Methods without
Adjustable Parameters: The mPW and mPW1PW Models," J. Chem. Phys., 1998, 108, 664-675,
DOI: 10.1063/1.475428.
- Galabov, B.; Yamaguchi, Y.; Remington, R. B.; Schaefer, H. F., "High Level ab Initio Quantum
Mechanical Predictions of Infrared Intensities," J. Phys. Chem. A, 2002, 106, 819-832,
DOI: 10.1021/jp013297b.
- Wohar, M. M.; Jagodzinski, P. W., "Infrared Spectra of
H2CO, H213CO, D2CO, and D213CO
and Anomalous Values in Vibrational Force Fields," J. Mol. Spectrosc., 1991, 148,
13-19, DOI: 10.1016/0022-2852(91)90030-E.
- Strey, G.; Mills, I. M., "Anharmonic Force Field of
Acetylene," J. Mol. Spectrosc., 1976,
59, 103-115, DOI: 10.1016/0022-2852(76)90046-1.
- Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.;
Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout,
R. F.; Hehre, W. J., "Molecular Orbital Studies of Vibrational Frequencies," Int. J.
Quantum Chem., Quantum Chem. Symp., 1981, 15, 269-278.
- Scott, A. P.; Radom, L., "Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock,
Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale
Factors," J. Phys. Chem., 1996, 100, 16502-16513, DOI: 10.1021/jp960976r.
- Halls, M. D.; Velkovski , J.; Schlegel, H. B., "Harmonic Frequency
Scaling Factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ Electric
Property Basis Set," Theor. Chem. Acc., 2001, 105, 413-421, DOI: 10.1007/s002140000204.
- Lynch, B. J.; Zhai, Y.; Truhlar, D. G., "Database of Frequency Scaling Factors for Electronic
Methods," 2003, http://comp.chem.umn.edu/database/freq_scale.htm.
- Nicolaides, A.; Matsushita, T.; Yonezawa, K.; Sawai,
S.; Tomioka, H.; Stracener, L. L.; Hodges, J. A.; McMahon, R. J., "The Elusive Benzocyclobutenylidene:
A Combined Computational and Experimental Attempt," J. Am. Chem. Soc., 2001, 123,
2870-2876, DOI: 10.1021/ja0039482.
- Nikitina, A. F.; Sheridan, R. S., "Geometry and Aromaticity in Highly Strained
Heterocyclic Allenes: Characterization of a 2,3-Didehydro-2H-thiopyran,"
Org. Lett., 2005, 7, 4467-4470, DOI: 10.1021/ol051733x.
- Schindler, M.; Kutzelnigg, W., "Theory of Magnetic Susceptibilities
and NMR Chemical Shifts in Terms of Localized Quantities. II. Application to
Some Simple Molecules," J. Chem. Phys., 1982, 76, 1919-1933, DOI: 10.1063/1.443165.
- London, F., "Quantum Theory of Interatomic Currents in Aromatic
Compounds," J. Phys. Radium, 1937, 8, 397-409.
- Ditchfield, R., "Self-consistent Perturbation Theory of Diamagnetism. I. A Gauge-Invariant LCAO (Linear
Combination of Atomic Orbitals) Method for NMR Chemical Shifts," Mol. Phys., 1974,
27, 789-807.
- Rablen, P. R.; Pearlman, S. A.; Finkbiner, J., "A
Comparison of Density Functional Methods for the Estimation of Proton Chemical
Shifts with Chemical Accuracy," J. Phys. Chem. A, 1999, 103, 7357-7363, DOI: 10.1021/jp9916889.
- Wang, B.; Fleischer, U.; Hinton, J. F.; Pulay, P., "Accurate Prediction
of Proton Chemical Shifts. I. Substituted Aromatic Hydrocarbons,"
J. Comput. Chem., 2001, 22, 1887-1895, DOI:
10.1002/jcc.1139.
- Wang, B.; Hinton, J. F.; Pulay, P., "Accurate Prediction of Proton Chemical
Shifts. II. Peptide Analogues," J. Comput. Chem., 2002, 23, 492-497, DOI: 10.1002/jcc.10044.
- Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao,
H.; Hommes, N. J. R. v. E., "Nucleus-Independent
Chemical Shifts: A Simple and Efficient Aromaticity Probe," J. Am. Chem. Soc., 1996,
118, 6317-6318, DOI: 10.1021/ja960582d.
- Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J., "Hartree-Fock
and Density Functional Theory ab Initio Calculation
of Optical Rotation Using GIAOs: Basis Set Dependence," J. Phys. Chem. A, 2000,
104, 1039-1046, DOI: 10.1021/jp993424s.
- Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J.,
"Calculation of Optical Rotation Using Density Functional Theory," J. Phys. Chem. A,
2001, 105, 5356-5371, DOI: 10.1021/jp0105138.
- Giorgio, E.; Viglione, R. G.; Zanasi, R.; Rosini, C., "Ab Initio
Calculation of Optical Rotatory Dispersion (ORD)
Curves: A Simple and Reliable Approach to the Assignment of the Molecular
Absolute Configuration," J. Am. Chem. Soc., 2004, 126, 12968-12976, DOI: 10.1021/ja046875l.
- Stephens, P. J.; McCann, D. M.; Cheeseman, J. R.; Frisch, M. J.,
"Determination of Absolute Configurations of Chiral
Molecules using ab initio Time-Dependent Density
Functional Theory Calculations of Optical Rotation: How Reliable are Absolute
Configurations Obtained for Molecules with Small Rotations?,"
Chirality, 2005, 17, S52-S64, DOI: 10.1002/chir.20109.
- Kongsted, J.; Pedersen, T. B.; Jensen, L.; Hansen, A. E.; Mikkelsen,
K. V., "Coupled Cluster and Density Functional Theory Studies of the
Vibrational Contribution to the Optical Rotation of (S)-Propylene Oxide," J.
Am. Chem. Soc., 2006, 128, 976-982, DOI: 10.1021/ja056611e
- Stephens, P. J.; McCann, D. M.; Devlin, F. J.; Flood, T. C.; Butkus, E.; Stoncius, S.; Cheeseman, J. R.,
"Determination of Molecular Structure Using Vibrational Circular Dichroism Spectroscopy: The Keto-lactone
Product of Baeyer-Villiger Oxidation of (+)-(1R,5S)-Bicyclo[3.3.1]nonane-2,7-dione,"
J. Org. Chem., 2005, 70, 3903-3913, DOI: 10.1021/jo047906y.