Chapter 1 Citations

  1. Cramer, C. J. Essential of Computational Chemistry: Theories and Models; John Wiley & Sons: New York, 2002.
  2. Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons: Chichester, England, 1999.
  3. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover: Mineola, N.Y., 1996.
  4. Born, M.; Oppenheimer, R., "Zur Quantentheorie der Molekeln," Ann. Phys., 1927, 84, 457-484.
  5. Roothaan, C. C. J., "New Developments in Molecular Orbital Theory," Rev. Mod. Phys., 1951, 23, 69-89, DOI: 10.1103/RevModPhys.23.69.
  6. Boys, S. F., "Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System," Proc. Roy. Soc., 1950, A200, 542-554, DOI: 10.1098/rspa.1950.0036.
  7. Ditchfield, R.; Hehre, W. J.; Pople, J. A., "Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules," J. Chem. Phys., 1971, 54, 724-728, DOI: 10.1063/1.1674902.
  8. Hehre, W. J.; Ditchfield, R.; Pople, J. A., "Self?Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian?Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules," J. Chem. Phys., 1972, 56, 2257-2261, DOI: 10.1063/1.1677527.
  9. Dunning, T. H., Jr., "Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen," J. Chem. Phys., 1989, 90, 1007-1023, DOI: 10.1063/1.456153.
  10. Woon, D. E.; Dunning, T. H., Jr., "Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon," J. Chem. Phys., 1993, 98, 1358-1371, DOI: 10.1063/1.464303.
  11. Woon, D. E.; Dunning, T. H., Jr., "Gaussian Basis Sets for Use in Correlated Molecular Calculations. V. Core-Valence Basis Sets for Boron Through Neon," J. Chem. Phys., 103, 4572-4585, DOI: 10.1063/1.470645.
  12. "EMSL Gaussian Basis Set Order Form," Molecular Science Computing Facility, E. M. S. L.; Pacific National Laboratory. A new interface is now offered as the Basis Set Exchange at; see the post on my blog.
  13. Sherrill, C. D.; Schaefer, H. F., III., "The Configuration Interaction Method: Advances in Highly Correlated Approaches," Adv. Quantum Chem., 1999, 34, 143-269,
  14. Brillouin, L., Actualities Sci. Ind, 1934, 71, 159,
  15. Langhoff, S. R.; Davidson, E. R., "Configuration Interaction Calculations on the Nitrogen Molecule," Int. J. Quantum Chem., 1974, 8, 61-72, DOI: 10.1002/qua.560080106.
  16. M�ller, C.; Plesset, M. S., "Note on an Approximation Treatment for Many-Electron Systems," Phys. Rev., 1934, 48, 618-622, DOI: 10.1103/PhysRev.46.618.
  17. Cizek, J., "On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods," J. Chem. Phys., 1966, 45, 4256-4266, DOI: 10.1063/1.1727484.
  18. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M., "A Fifth-order Perturbation Comparison of Electron Correlation Theories," Chem. Phys. Lett., 1989, 157, 479-483, DOI: 10.1016/S0009-2614(89)87395-6.
  19. Pople, J. A.; Head-Gordon, M.; Raghavachari, K., "Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies," J. Chem. Phys., 1987, 87, 5968-5975, DOI: 10.1063/1.453520.
  20. Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W., "Size-Consistent Brueckner Theory Limited to Double Substitutions," Chem. Phys. Lett., 1989, 164, 185-192, DOI: 10.1016/0009-2614(89)85013-4.
  21. Shepard, R., "The Multiconfiguration Self-Consistent Field Method," Adv. Chem. Phys., 1987, 69, 63-200.
  22. Roos, B., "The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations," Adv. Chem. Phys., 1987, 69, 399-445.
  23. Andersson, K.; Malmqvist, P.-�.; Roos, B. O., "Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function," J. Chem. Phys., 1992, 96, 1218-1226, DOI: 10.1063/1.462209.
  24. Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A., "Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies," J. Chem. Phys. 1989, 90, 5622-5629, DOI: 10.1063/1.456415.
  25. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A., "Gaussian-2 Theory for Molecular Energies of First- and Second-Row Compounds," J. Chem. Phys., 1991, 94, 7221-7230, DOI: 10.1063/1.460205.
  26. Curtiss, L. A.; Raghavachari, K.; Pople, J. A., "Gaussian-2 Theory Using Reduced M�ller?Plesset Orders," J. Chem. Phys., 1993, 98, 1293-1298, DOI: 10.1063/1.464297.
  27. Curtiss, L. A.; J. Chem. Phys., 1998, 109, 7764-7776, DOI: 10.1063/1.477422.
  28. Montgomery, J. A., Jr.; Frisch , M. J.; Ochterski, J. W.; Petersson, G. A., "A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies," J. Chem. Phys., 1999, 110, 2822-2827, DOI: 10.1063/1.477924.
  29. Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A., "A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method," J. Chem. Phys., 2000, 112, 6532-6542, DOI: 10.1063/1.481224.
  30. Martin, J. M. L.; de Oliveira, G., "Towards Standard Methods for Benchmark Quality ab Initio Thermochemistry ? W1 and W2 Theory," J. Chem. Phys., 1999, 111, 1843-1856, DOI: 10.1063/1.479454.
  31. Martin, J. M. L., "Computational Thermochemistry: A Brief Overview of Quantum Mechanical Approaches," Ann. Rep. Comput. Chem., 2005, 1, 31-43.
  32. Cs�sz�r, A. G.; Allen, W. D.; Schaefer, H. F., III, "In Pursuit of the ab Initio Limit for Conformational Energy Prototypes," J. Chem. Phys., 1998, 108, 9751-9764, DOI: 10.1063/1.476449.
  33. Gao, J., "Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials," Rev. Comput. Chem. 1996, 7, 119-185.
  34. Gao, J.; Truhlar, D. G., "Quantum Mechanical Methods for Enzyme Kinetics," Ann. Rev. Phys. Chem., 2002, 53, 467-505, DOI: 10.1146/annurev.physchem.53.091301.150114.
  35. Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K., "ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition," J. Phys. Chem., 1996, 100, 19357-19363, DOI: 10.1021/jp962071j.
  36. Hohenberg, P.; Kohn, W., "Inhomogeneous Electron Gas," Phys. Rev., 1964, 136, B864?B871, DOI: 10.1103/PhysRev.136.B864.
  37. Kohn, W.; Sham, L. J., "Self-Consistent Equations Including Exchange and Correlation Effects," Phys. Rev., 1965, 140, A1133?A1138, DOI: 10.1103/PhysRev.140.A1133.
  38. Vosko, S. H.; Wilk, L.; Nusair, M., "Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: a Critical Analysis," Can. J. Phys., 1980, 58, 1200-1211.
  39. Koch, W.; Holthaisen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
  40. Becke, A. D., "Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior," Phys. Rev. A 1988, 38, 3098-3100, DOI: 10.1103/PhysRevA.38.3098.
  41. Lee, C.; Yang, W.; Parr, R. G., "Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density," Phys. Rev. B, 1988, 37, 785?789, DOI: 10.1103/PhysRevB.37.785.
  42. Perdew, J. P.; Wang, Y., "Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy," Phys. Rev. B, 1992, 45, 13244-13249, DOI: 10.1103/PhysRevB.45.13244.
  43. Becke, A. D., "Density-Functional Thermochemistry. III. The Role of Exact Exchange," J. Chem. Phys., 1993, 98, 5648-5652, DOI: 10.1063/1.464913.
  44. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields," J. Phys. Chem., 1994, 98, 11623-11627, DOI: 10.1021/j100096a001.
  45. Zhao, Y.; Truhlar, D. G., "Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions," J. Phys. Chem. A, 2004, 108, 6908-6918, DOI: 10.1021/jp048147q.
  46. Zhao, Y.; Truhlar, D. G., "Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions," J. Phys. Chem. A, 2005, 109, 5656-5667, DOI: 10.1021/jp050536c.
  47. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., "Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions," J. Chem. Theory Comput. 2006, 2, 364-382, DOI: 10.1021/ct0502763.
  48. Schlegel, H. B., "Exploring Potential Energy Surfaces for Chemical Reactions: An Overview of Some Practical Methods," J. Comput. Chem., 2003, 24, 1514-1527, DOI: 10.1002/jcc.10231.
  49. Gonzalez, C.; Schlegel, H. B., "Reaction Path Following in Mass-Weighted Internal Coordinates," J. Phys. Chem., 1990, 94, 5523-5527, DOI: 10.1021/j100377a021.
  50. Bachrach, S. M., "Population Analysis and Electron Densities from Quantum Mechanics," In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH Publishers: New York, 1994; Vol. 5, 171-228.
  51. Mulliken, R. S., "Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I," J. Chem. Phys., 1955, 23, 1833-1840, DOI: 10.1063/1.1740588.
  52. Cusachs, L. C.; Politzer, P., "On the Problem of Defining the Charge on an Atom in a Molecule," Chem. Phys. Lett., 1968, 1, 529-531, DOI: 10.1016/0009-2614(68)80010-7.
  53. L�wdin, P.-O., "On the Orthogonality Problem," Adv. Quantum Chem., 1970, 5, 185-199.
  54. Reed, A. E.; Weinstock, R. B.; Weinhold, F., "Natural Population Analysis," J. Chem. Phys., 1985, 83, 735-746, DOI: 10.1063/1.449486.
  55. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990.
  56. Barone, V., "Anharmonic Vibrational Properties by a Fully Automated Second-Order Perturbative Approach," J. Chem. Phys., 2005, 122, 014108, DOI: 10.1063/1.1824881.
  57. Adamo, C.; Barone, V., "Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The mPW and mPW1PW Models," J. Chem. Phys., 1998, 108, 664-675, DOI: 10.1063/1.475428.
  58. Galabov, B.; Yamaguchi, Y.; Remington, R. B.; Schaefer, H. F., "High Level ab Initio Quantum Mechanical Predictions of Infrared Intensities," J. Phys. Chem. A, 2002, 106, 819-832, DOI: 10.1021/jp013297b.
  59. Wohar, M. M.; Jagodzinski, P. W., "Infrared Spectra of H2CO, H213CO, D2CO, and D213CO and Anomalous Values in Vibrational Force Fields," J. Mol. Spectrosc., 1991, 148, 13-19, DOI: 10.1016/0022-2852(91)90030-E.
  60. Strey, G.; Mills, I. M., "Anharmonic Force Field of Acetylene," J. Mol. Spectrosc., 1976, 59, 103-115, DOI: 10.1016/0022-2852(76)90046-1.
  61. Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J., "Molecular Orbital Studies of Vibrational Frequencies," Int. J. Quantum Chem., Quantum Chem. Symp., 1981, 15, 269-278.
  62. Scott, A. P.; Radom, L., "Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors," J. Phys. Chem., 1996, 100, 16502-16513, DOI: 10.1021/jp960976r.
  63. Halls, M. D.; Velkovski , J.; Schlegel, H. B., "Harmonic Frequency Scaling Factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ Electric Property Basis Set," Theor. Chem. Acc., 2001, 105, 413-421, DOI: 10.1007/s002140000204.
  64. Lynch, B. J.; Zhai, Y.; Truhlar, D. G., "Database of Frequency Scaling Factors for Electronic Methods," 2003,
  65. Nicolaides, A.; Matsushita, T.; Yonezawa, K.; Sawai, S.; Tomioka, H.; Stracener, L. L.; Hodges, J. A.; McMahon, R. J., "The Elusive Benzocyclobutenylidene: A Combined Computational and Experimental Attempt," J. Am. Chem. Soc., 2001, 123, 2870-2876, DOI: 10.1021/ja0039482.
  66. Nikitina, A. F.; Sheridan, R. S., "Geometry and Aromaticity in Highly Strained Heterocyclic Allenes: Characterization of a 2,3-Didehydro-2H-thiopyran," Org. Lett., 2005, 7, 4467-4470, DOI: 10.1021/ol051733x.
  67. Schindler, M.; Kutzelnigg, W., "Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities. II. Application to Some Simple Molecules," J. Chem. Phys., 1982, 76, 1919-1933, DOI: 10.1063/1.443165.
  68. London, F., "Quantum Theory of Interatomic Currents in Aromatic Compounds," J. Phys. Radium, 1937, 8, 397-409.
  69. Ditchfield, R., "Self-consistent Perturbation Theory of Diamagnetism. I. A Gauge-Invariant LCAO (Linear Combination of Atomic Orbitals) Method for NMR Chemical Shifts," Mol. Phys., 1974, 27, 789-807.
  70. Rablen, P. R.; Pearlman, S. A.; Finkbiner, J., "A Comparison of Density Functional Methods for the Estimation of Proton Chemical Shifts with Chemical Accuracy," J. Phys. Chem. A, 1999, 103, 7357-7363, DOI: 10.1021/jp9916889.
  71. Wang, B.; Fleischer, U.; Hinton, J. F.; Pulay, P., "Accurate Prediction of Proton Chemical Shifts. I. Substituted Aromatic Hydrocarbons," J. Comput. Chem., 2001, 22, 1887-1895, DOI: 10.1002/jcc.1139.
  72. Wang, B.; Hinton, J. F.; Pulay, P., "Accurate Prediction of Proton Chemical Shifts. II. Peptide Analogues," J. Comput. Chem., 2002, 23, 492-497, DOI: 10.1002/jcc.10044.
  73. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E., "Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe," J. Am. Chem. Soc., 1996, 118, 6317-6318, DOI: 10.1021/ja960582d.
  74. Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J., "Hartree-Fock and Density Functional Theory ab Initio Calculation of Optical Rotation Using GIAOs: Basis Set Dependence," J. Phys. Chem. A, 2000, 104, 1039-1046, DOI: 10.1021/jp993424s.
  75. Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J., "Calculation of Optical Rotation Using Density Functional Theory," J. Phys. Chem. A, 2001, 105, 5356-5371, DOI: 10.1021/jp0105138.
  76. Giorgio, E.; Viglione, R. G.; Zanasi, R.; Rosini, C., "Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration," J. Am. Chem. Soc., 2004, 126, 12968-12976, DOI: 10.1021/ja046875l.
  77. Stephens, P. J.; McCann, D. M.; Cheeseman, J. R.; Frisch, M. J., "Determination of Absolute Configurations of Chiral Molecules using ab initio Time-Dependent Density Functional Theory Calculations of Optical Rotation: How Reliable are Absolute Configurations Obtained for Molecules with Small Rotations?," Chirality, 2005, 17, S52-S64, DOI: 10.1002/chir.20109.
  78. Kongsted, J.; Pedersen, T. B.; Jensen, L.; Hansen, A. E.; Mikkelsen, K. V., "Coupled Cluster and Density Functional Theory Studies of the Vibrational Contribution to the Optical Rotation of (S)-Propylene Oxide," J. Am. Chem. Soc., 2006, 128, 976-982, DOI: 10.1021/ja056611e
  79. Stephens, P. J.; McCann, D. M.; Devlin, F. J.; Flood, T. C.; Butkus, E.; Stoncius, S.; Cheeseman, J. R., "Determination of Molecular Structure Using Vibrational Circular Dichroism Spectroscopy: The Keto-lactone Product of Baeyer-Villiger Oxidation of (+)-(1R,5S)-Bicyclo[3.3.1]nonane-2,7-dione," J. Org. Chem., 2005, 70, 3903-3913, DOI: 10.1021/jo047906y.