Chapter 2 Citations

  1. Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X., "Assessment of Experimental Bond Dissociation Energies Using Composite ab Initio Methods and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond Dissociation Energies," J. Chem. Inf. Comput. Sci., 2003, 43, 2005-2013, DOI: 10.1021/ci034033k.
  2. Blanksby, S. J.; Ellison, G. B., "Bond Dissociation Energies of Organic Molecules," Acc. Chem. Res., 2003, 36, 255-263, DOI: 10.1021/ar020230d.
  3. Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L., "Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals," J. Phys. Chem. A, 2001, 105, 6750-6756, DOI: 10.1021/jp010442c.
  4. Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo, Q.-X., "Homolytic C-H and N-H Bond Dissociation Energies of Strained Organic Compounds," J. Org. Chem., 2004, 69, 3129-3138, DOI: 10.1021/jo035306d.
  5. Yao, X.-Q.; Hou, X.-J.; Jiao, H.; Xiang, H.-W.; Li, Y.-W., "Accurate Calculations of Bond Dissociation Enthalpies with Density Functional Methods," J. Phys. Chem. A, 2003, 107, 9991-9996, DOI: 10.1021/jp0361125.
  6. Check, C. E.; Gilbert, T. M., "Progressive Systematic Underestimation of Reaction Energies by the B3LYP Model as the Number of C-C Bonds Increases: Why Organic Chemists Should Use Multiple DFT Models for Calculations Involving Polycarbon Hydrocarbons," J. Org. Chem., 2005, 70, 9828-9834, DOI: 10.1021/jo051545k.
  7. Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K., "Assessment of Gaussian-3 and Density Functional Theories for Enthalpies of Formation of C<sub>1</sub>-C<sub>16</sub> Alkanes," J. Phys. Chem. A, 2000, 104, 5850-5854, DOI: 10.1021/jp994429s.
  8. Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: New York, 2002.
  9. R�chardt, C., "Relations Between Structure and Reactivity in Free-Radical Chemistry," Angew. Chem. Int. Ed. Engl., 1970, 9, 830-843, DOI: 10.1002/anie.197008301.
  10. Izgorodina, E. I.; Coote, M. L.; Radom, L., "Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A Surprising Shortcoming of Density Functional Theory," J. Phys. Chem. A, 2005, 109, 7558-7566, DOI: 10.1021/jp052021r.
  11. Coote, M. L.; Pross, A.; Radom, L., "Variable Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu)," Org. Lett., 2003, 5, 4689-4692, DOI: 10.1021/ol035860+.
  12. Matsunaga, N.; Rogers, D. W.; Zavitsas, A. A., "Pauling's Electronegativity Equation and a New Corollary Accurately Predict Bond Dissociation Enthalpies and Enhance Current Understanding of the Nature of the Chemical Bond," J. Org. Chem., 2003, 68, 3158-3172, DOI: http://dx.doi.org/10.1021/jo020650g.
  13. Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U., "Calorimetric and Equilibrium Studies on Some Stable Nitroxide and Iminoxy Radicals. Approximate Oxygen-Hydrogen Bond Dissociation Energies in Hydroxylamines and Oximes," J. Am. Chem. Soc., 1973, 95, 8610-8614., DOI: 10.1021/ja00807a018.
  14. Bordwell, F. G.; Ji, G.-Z., "Equilibrium Acidities and Homolytic Bond Dissociation Energies of the H-O Bonds in Oximes and Amidoximes," J. Org. Chem., 1992, 57, 3019-3025, DOI: 10.1021/jo00037a014.
  15. Bordwell, F. G.; Zhang, S., "Structural Effects on Stabilities of Iminoxy Radicals," J. Am. Chem. Soc., 1995, 117, 4858-4861, DOI: 10.1021/ja00122a016.
  16. Pratt, D. A.; Blake, J. A.; Mulder, P.; Walton, J. C.; Korth, H.-G.; Ingold, K. U., "O-H Bond Dissociation Enthalpies in Oximes: Order Restored," J. Am. Chem. Soc., 2004, 126, 10667-10675, DOI: 10.1021/ja047566y.
  17. Bordwell, F. G.; Liu, W.-Z., "Solvent Effects on Homolytic Bond Dissociation Energies of Hydroxylic Acids," J. Am. Chem. Soc., 1996, 118, 10819-10823, DOI: 10.1021/ja961469q.
  18. Lias, S. G.; Bartmess, J. E.; Holmes, J. L.; Levin, R. D.; Mallard, W. G., "Gas-Phase Ion and Neutral Thermochemistry," J. Phys. Chem. Ref. Data, 1988, Suppl. 17, 1-81.
  19. NIST Chemistry WebBook, NIST, 2005, http://webbook.nist.gov/.
  20. Kollmar, H., "The Stability of Alkyl Anions. A Molecular Orbital Theoretical Study," J. Am. Chem. Soc., 1978, 100, 2665-2669, DOI: 10.1021/ja00477a016.
  21. Chandrasekhar, J.; Andrade, J. G.; Schleyer, P. v. R., "Efficient and Accurate Calculation of Anion Proton Affinities," J. Am. Chem. Soc., 1981, 103, 5609-5612, DOI: 10.1021/ja00408a074.
  22. Saunders, W. H., Jr., "Ab Initio and Semi-Empirical Investigation of Gas-Phase Carbon Acidity," J. Phys. Org. Chem. 1994, 7, 268-271, DOI: 10.1002/poc.610070509.
  23. Burk, P.; Koppel, I. A.; Koppel, I.; Leito, I.; Travnikova, O., "Critical Test of Performance of B3LYP Functional for Prediction of Gas-Phase Acidities and Basicities," Chem. Phys. Lett. 2000, 323, 482-489, DOI: 10.1016/S0009-2614(00)00566-2.
  24. Merrill, G. N.; Kass, S. R., "Calculated Gas-Phase Acidities Using Density Functional Theory: Is It Reliable?," J. Phys. Chem., 1996, 100, 17465-17471, DOI: 10.1021/jp961557x.
  25. Ochterski, J. W.; G. A. Petersson, G. A.; Montgomery, J. A., Jr., "A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms," J. Chem. Phys., 1996, 104, 2598-2619, DOI: 10.1063/1.470985.
  26. Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B., "A Comparison of Model Chemistries," J. Am. Chem. Soc., 1995, 117, 11299-11308, DOI: 10.1021/ja00150a030.
  27. Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K., "Acidity of Organic Molecules in the Gas Phase and in Aqueous Solvent," J. Phys. Chem. A, 2000, 104, 9619-9624, DOI: 10.1021/jp001938h.
  28. DePuy, C. H.; Gronert, S.; Barlow, S. E.; Bierbaum, V. M.; Damrauer, R., "The Gas-Phase Acidities of the Alkanes," J. Am. Chem. Soc., 1989, 111, 1968-1973, DOI: 10.1021/ja00188a003.
  29. Luh, T.-Y.; Stock, L. M., "Kinetic Acidity of Cubane," J. Am. Chem. Soc., 1974, 96, 3712-3713, DOI: 10.1021/ja00818a090.
  30. Ritchie, J. P.; Bachrach, S. M., "Comparison of the Calculated Acidity of Cubane with That of Other Strained and Unstrained Hydrocarbons," J. Am. Chem. Soc., 1990, 112, 6514-6517, DOI: 10.1021/ja00174a010.
  31. Hare, M.; Emrick, T.; Eaton, P. E.; Kass, S. R., "Cubyl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Cubane," J. Am. Chem. Soc., 1997, 119, 237-238, DOI: 10.1021/ja9627858.
  32. Broadus, K. M.; Kass, S. R.; Osswald, T.; Prinzbach, H., "Dodecahedryl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Dodecahedrane," J. Am. Chem. Soc., 2000, 122, 10964-10968, DOI: 10.1021/ja002588f.
  33. Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass, S. R., "Why Does Cyclopropene Have the Acidity of an Acetylene but the Bond Energy of Methane?," J. Am. Chem. Soc., 2003, 125, 11746-11750, DOI: 10.1021/ja035725s.
  34. Manini, P.; Amrein, W.; Gramlich, V.; Diederich, F., "Expanded Cubane: Synthesis of a Cage Compound with a C56 Core by Acetylenic Scaffolding and Gas-Phase Transformations into Fullerenes," Angew. Chem. Int. Ed., 2002, 4339-4343, DOI: 10.1002/1521-3773(20021115)41:22<4339::AID-ANIE4339>3.0.CO;2-8.
  35. Bachrach, S. M., "Structure, Deprotonation Energy, and Cation Affinity of an Ethynyl-Expanded Cubane," J. Phys. Chem. A., 2003, 107, 4957-4961, DOI: 10.1021/jp034406k.
  36. Bachrach, S. M.; Demoin, D. W., "Computational Studies of Ethynyl- and Diethynyl-Expanded Tetrahedranes, Prismanes, Cubanes, and Adamantanes," J. Org. Chem., 2006, 71, 5105-5116, DOI: 10.1021/jo060240i
  37. de Visser, S. P.; van der Horst, E.; de Koning, L. J.; van der Hart, W. J.; Nibbering, N. M. M., "Characterization of Isomeric C4H5- Anions in the Gas Phase; Theory and Experiment," J. Mass. Spectrom., 1999, 34, 303-310, DOI: 10.1002/(SICI)1096-9888(199904)34:4<303::AID-JMS753>3.0.CO;2-C.
  38. Siggel, M. R.; Thomas, T. D., "Why are Organic Acids Stronger Acids than Organic Alcohols?," J. Am. Chem. Soc., 1986, 108, 4360-4363, DOI: 10.1021/ja00275a022.
  39. Burk, P.; Schleyer, P. v. R., "Why are Carboxylic Acids Stronger Acids than Alcohols? The Electrostatic Theory of Siggel�Thomas Revisited," J. Mol. Struct. (THEOCHEM), 2000, 505, 161-167, DOI: 10.1016/S0166-1280(99)00357-7.
  40. Siggel, M. R. F.; Streitwieser, A. J.; Thomas, T. D., "The Role of Resonance and Inductive Effects in the Acidity of Carboxylic Acids," J. Am. Chem. Soc., 1988, 110, 8022-8028, DOI: http://dx.doi.org/10.1021/ja00232a011.
  41. Exner, O., "Why are Carboxylic Acids and Phenols Stronger Acids than Alcohols?," J. Org. Chem., 1988, 53, 1810-1812, DOI: 10.1021/jo00243a042.
  42. Dewar, M. J. S.; Krull, K. L., "Acidity of Carboxylic Acids: Due to Delocalization or Induction?," J. Chem. Soc., Chem. Commun. 1990, 333-334, DOI: 10.1039/C39900000333.
  43. Perrin, C. L., "Atomic Size Dependence of Bader Electron Populations: Significance for Questions of Resonance Stabilization," J. Am. Chem. Soc., 1991, 113, 2865-2868, DOI: 10.1021/ja00008a011.
  44. Hiberty, P. C.; Byrman, C. P., "Role of π-Electron Delocalization in the Enhanced Acidity of Carboxylic Acids and Enols Relative to Alcohols," J. Am. Chem. Soc., 1995, 117, 9875-9880, DOI: 10.1021/ja00144a013.
  45. Rablen, P. R., "Is the Acetate Anion Stabilized by Resonance or Electrostatics? A Systematic Structural Comparison," J. Am. Chem. Soc., 2000, 122, 357-368, DOI: 10.1021/ja9928475.
  46. Holt, J.; Karty, J. M., "Origin of the Acidity Enhancement of Formic Acid over Methanol: Resonance versus Inductive Effects," J. Am. Chem. Soc., 2003, 125, 2797-2803, DOI: 10.1021/ja020803h.
  47. Bachrach, S. M.; Hare, M.; Kass, S. R., "Alkali Metal Salts of Dianions: A Theoretical and Experimental Study of (C6H4)2-M+ (M = Li and Na)," J. Am. Chem. Soc., 1998, 120, 12646-12649, DOI: 10.1021/ja9825478.
  48. Davico, G. E.; Bierbaum, V. M.; DePuy, C. H.; Ellison, G. B.; Squires, R. R., "The C-H Bond Energy of Benzene," J. Am. Chem. Soc., 1995, 117, 2590-2599, DOI: 10.1021/ja00114a023.
  49. Streitwieser, A.; Bachrach, S. M.; Dorigo, A.; Schleyer, P. v. R. In Lithium Chemistry: A Theoretical and Experimental Overview; Sapse, A.-M., Schleyer, P. v. R., Eds.; J. Wiley & Sons: New York, 1995.
  50. Ritchie, J. P., "Bridged and Linear Dilithioacetylenes - Two Minima on the Potential Energy Surface?," Tetrahedron Lett., 1982, 23, 4999-5002, DOI: 10.1016/S0040-4039(00)85556-2.
  51. Lee, S. Y.; Boo, B. H.; Kang, H. K.; Kang, D.; Judai, K.; Nishijo, J.; Nishi, N., "Reexamination of the Structures and Energies of Li2C2 and Li4C4," Chem. Phys. Lett., 2005, 411, 484-491, DOI: 10.1016/j.cplett.2005.05.123.
  52. Bolton, E. E.; Schaefer, H. F., III; Laidig, W. D.; Schleyer, P. v. R., "Singlet C2H2Li2: Acetylenic and 1,2-Dilithioethene Isomers. A Remarkably Congested Potential Energy Hypersurface for a Simple Organometallic System," J. Am. Chem. Soc., 1994, 116, 9602-9612, DOI: 10.1021/ja00100a027.
  53. Kos, A. J.; Schleyer, P. v. R., "Cyclic 4π Stabilization. Combined Moebius-Hueckel Aromaticity in Doubly Lithium Bridged R4C4Li2 systems," J. Am. Chem. Soc., 1980, 102, 7928-7929, DOI: 10.1021/ja00547a018.
  54. Ritchie, J. P.; Bachrach, S. M., "Bond Paths and Bond Properties of Carbon-Lithium Bonds," J. Am. Chem. Soc., 1987, 109, 5909-5916, DOI: 10.1021/ja00254a004.
  55. Bachrach, S. M.; Chamberlin, A. C., "Deprotonation of Lithiated Benzenes," J. Org. Chem., 2004, 69, 2111-2122, DOI: 10.1021/jo035265l.
  56. Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; Wiley: New York, 2001.
  57. Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds; 2nd ed.; Chapman and Hall: London, 1986.
  58. Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R., "Additivity Rules for the Estimation of Thermochemical Properties," Chem. Rev., 1969, 69, 279-324, DOI: 10.1021/cr60259a002.
  59. Benson, S. W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; 2nd ed.; Wiley: New York, 1976.
  60. Wiberg, K. B., "Group Equivalents for Converting ab initio Energies to Enthalpies of Formation," J. Comp. Chem., 1984, 5, 197-199, DOI: 10.1002/jcc.540050212.
  61. Ibrahim, M. R.; Schleyer, P. v. R., "Atom Equivalents for Relating ab initio Energies to Enthalpies of Formation," J. Comp. Chem., 1985, 6, 157-167, DOI: 10.1002/jcc.540060302.
  62. Cioslowski, J.; Liu, G.; Piskorz, P., "Computationally Inexpensive Theoretical Thermochemistry," J. Phys. Chem. A, 1998, 102, 9890-9900, DOI: 10.1021/jp982024m.
  63. Guthrie, J. P., "Heats of Formation from DFT Calculations: An Examination of Several Parameterizations," J. Phys. Chem. A 2001, 105, 9196-9202, DOI: 10.1021/jp010355k.
  64. Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A., "Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation," J. Am. Chem. Soc., 1970, 92, 4796-4801, DOI: 10.1021/ja00719a006.
  65. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M., "An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons," Tetrahedron, 1976, 32, 317-323, DOI: 10.1016/0040-4020(76)80043-9.
  66. George, P.; Trachtman, M.; Brett, A. M.; Bock, C. W., "Comparison of various isodesmic and homodesmotic reaction heats with values derived from published ab initio molecular orbital calculations," J. Chem. Soc., Perkin Trans. 2, 1977, 1036-1047, DOI: 10.1039/P29770001036.
  67. Bachrach, S. M., "The Group Equivalent Reaction: An Improved Method for Determining Ring Strain Energy," J. Chem. Ed., 1990, 67, 907-908.
  68.  
  69. Boatz, J. A.; Gordon, M. S.; Hilderbrandt, R. L., "Structure and Bonding in Cycloalkanes and Monosilacycloalkanes," J. Am. Chem. Soc., 1988, 110, 352-358, DOI: 10.1021/ja00210a005.
  70. Alcam�, M.; M�, O.; Y��ez, M., "G2 ab Initio Calculations on Three-Membered Rings: Role of Hydrogen Atoms," J. Comp. Chem., 1998, 19, 1072-1086, DOI: 10.1002/(SICI)1096-987X(19980715)19:9<1072::AID-JCC8>3.0.CO;2-N.
  71. Cremer, D., "Pros and Cons of σ-Aromaticity," Tetrahedron, 1988, 44, 7427-7454, DOI: 10.1016/S0040-4020(01)86238-4.
  72. Cremer, D.; Gauss, J., "Theoretical Determination of Molecular Structure and Conformation. 20. Reevaluation of the Strain Energies of Cyclopropane and Cyclobutane - CC and CH Bond Energies, 1,3 Interactions, and σ-Aromaticity," J. Am. Chem. Soc., 1986, 108, 7467-7477, DOI: 10.1021/ja00284a004.
  73. Baeyer, A. v., "�ber Polyacetylenverbindungen," Chem. Ber., 1885, 18, 2269-2281.
  74. Huisgen, R., "Adolf von Baeyer's Scientific Achievements - a Legacy," Angew. Chem. Int. Ed. Engl., 1986, 25, 297-311, DOI: 10.1002/anie.198602973.
  75. Snyder, R. G.; Schachtschneider, J. H., "A Valence Force Field for Saturated Hydrocarbons," Spectrochim. Acta, 1965, 21, 169-195, DOI: http://dx.doi.org/10.1016/0371-1951(65)80115-1.
  76. Walsh, A. D., "Structures of Ethylene Oxide, Cyclopropane, and Related Molecules," Trans. Faraday Soc., 1949, 45, 179-190, DOI: 10.1039/TF9494500179.
  77. Bader, R. F. W. Atoms in Molecules - A Quantum Theory; Oxford University Press: Oxford, 1990.
  78. Pitzer, K. S., "Strain Energies of Cyclic Hydrocarbons," Science, 1945, 101, 672.
  79. Dunitz, J. D.; Schomaker, V., "The Molecular Structure of Cyclobutane," J. Chem. Phys., 1952, 20, 1703-1707, DOI: 10.1063/1.1700271.
  80. (80) Bauld, N. L.; Cessac, J.; Holloway, R. L., "1,3(Nonbonded) Carbon/Carbon Interactions. The Common Cause of Ring Strain, Puckering, and Inward Methylene Rocking in Cyclobutane and of Vertical Nonclassical Stabilization, Pyramidalization, Puckering, and outward Methylene rocking in the Cyclobutyl Cation," J. Am. Chem. Soc., 1977, 99, 8140-8144, DOI: 10.1021/ja00467a003.
  81. Coulson, C. A.; Moffitt, W. E., "The Properties of Certain Strained Hydrocarbons," Phil. Mag., 1949, 40, 1-35.
  82. Baghal-Vayjooee, M. H.; Benson, S. W., "Kinetics and Thermochemistry of the Reaction Atomic Chlorine + Cyclopropane -> Hydrochloric Acid + Cyclopropyl Radical. Heat of Formation of the Cyclopropyl radical," J. Am. Chem. Soc., 1979, 101, 2838-2840, DOI: 10.1021/ja00505a005.
  83. Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N., "Kinetics and Thermochemistry of R + HBr -> RH + Br Reactions: Determinations of the Heat of Formation of C2H5, i-C3H7, sec-C4H9 and t-C4H9," J. Phys. Chem., 1992, 96, 9847-9855, DOI: 10.1021/j100203a050.
  84. Exner, K.; Schleyer, P. v. R., "Theoretical Bond Energies: A Critical Evaluation," J. Phys. Chem. A., 2001, 105, 3407-3416, DOI: 10.1021/jp004193o.
  85. Grimme, S., "Theoretical Bond and Strain Energies of Molecules Derived from Properties of the Charge Density at Bond Critical Points," J. Am. Chem. Soc., 1996, 118, 1529-1534, DOI: 10.1021/ja9532751.
  86. Johnson, W. T. G.; Borden, W. T., "Why Are Methylenecyclopropane and 1-Methylcylopropene More "Strained" than Methylcyclopropane?," J. Am. Chem. Soc, 1997, 119, 5930-5933, DOI: 10.1021/ja9638061.
  87. Bach, R. D.; Dmitrenko, O., "The Effect of Substitutents on the Strain Energies of Small Ring Compounds," J. Org. Chem., 2002, 67, 2588-2599, DOI: 10.1021/jo016241m.
  88. Bach, R. D.; Dmitrenko, O., "Strain Energy of Small Ring Hydrocarbons. Influence of C-H Bond Dissociation Energies," J. Am. Chem. Soc., 2004, 126, 4444-4452, DOI: 10.1021/ja036309a.
  89. Dewar, M. J. S., "σ-Conjugation and σ-Aromaticity," Bull. Soc. Chim. Belg., 1979, 88, 957-967.
  90. Dewar, M. J. S., "Chemical Implications of σ Conjugation," J. Am. Chem. Soc., 1984, 106, 669-682, DOI: 10.1021//ja00315a036.
  91. Kraka, E.; Cremer, D., "Theoretical Determination of Molecular Structure and Conformation. 15. Three-membered Rings: Bent Bonds, Ring Strain, and Surface Delocalization," J. Am. Chem. Soc., 1985, 107, 3800-3810, DOI: 10.1021/ja00299a009.
  92. Moran, D.; Manoharan, M.; Heine, T.; Schleyer, P. v. R., "σ-Antiaromaticity in Cyclobutane, Cubane, and Other Molecules with Saturated Four-Membered Rings," Org. Lett.. 2003, 5, 23-26, DOI: 10.1021/ol027159w.
  93. Schleyer, P. v. R.; Jiao, H., "What is Aromaticity?," Pure. Appl. Chem. 1996, 68, 209-218, http://www.iupac.org/publications/pac/1996/pdf/6802x0209.pdf.
  94. Krygowski, T. M.; Cyra�ski, M. K.; Czarnocki, Z.; H�felinger, G.; Katritzky, A. R., "Aromaticity: a Theoretical Concept of Immense Practical Importance," Tetrahedron, 2000, 56, 1783-1796, DOI: 10.1016/S0040-4020(99)00979-5.
  95. Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; John Wiley & Sons: New York, 1994.
  96. Schleyer, P. v. R., "Aromaticity," Chem. Rev., 2001, 101, 1115-1566, DOI: 10.1021/cr0103221.
  97. Cyranski, M. K., "Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies," Chem. Rev., 2005, 105, 3773 - 3811, DOI: 10.1021/cr0300845.
  98. Cyranski, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G., "Facts and Artifacts about Aromatic Stability Estimation," Tetrahedron 2003, 59, 1657-1665, DOI: 10.1016/S0040-4020(03)00137-6.
  99. Hedberg, L.; Hedberg, K.; Cheng, P.-C.; Scott, L. T., "Gas-Phase Molecular Structure of Corannulene, C20H10. An Electron-Diffraction Study Augmented by ab Initio and Normal Coordinate Calculations," J. Phys. Chem. A, 2000, 104, 7689-7694, DOI: 10.1021/jp0015527.
  100. Choi, C. H.; Kertesz, M., "Bond Length Alternation and Aromaticity in Large Annulenes," J. Chem. Phys., 1998, 108, 6681-6688, DOI: 10.102110.1063/1.476083.
  101. Aromaticity, Pseudo-aromaticiy, Anti-aromaticity, Proceedings of an International Symposium; Bergmann, E. D.; Pullman, B., Eds.; Israel Academy of Sciences and Humanities: Jerusalem, 1971; p. 33.
  102. Katritzky, A. R.; Barczynski, P.; Musumarra, G.; Pisano, D.; Szafran, M., "Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles," J. Am. Chem. Soc., 1989, 111, 7-15, DOI: 10.1021/ja00183a002.
  103. Jug, K.; Koester, A. M., "Aromaticity as a Multi-Dimensional Phenomenon," J. Phys. Org. Chem., 1991, 4, 163-169.
  104. Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B., "Aromaticity and Antiaromaticity in Five-Membered C4H4X Ring Systems: Classical and Magnetic Concepts May Not Be Orthogonal," Angew. Chem. Int. Ed. Engl., 1995, 34, 337-340, DOI: 10.1002/anie.199503371.
  105. Katritzky, A. R.; Karelson, M.; Sild, S.; Krygowski, T. M.; Jug, K., "Aromaticity as a Quantitative Concept. 7. Aromaticity Reaffirmed as a Multidimensional Characteristic," J. Org. Chem., 1998, 63, 5228-5231, DOI: 10.1021/jo970939b.
  106. Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R., "To What Extent Can Aromaticity Be Defined Uniquely?," J. Org. Chem., 2002, 67, 1333-1338, DOI: 10.1021/jo016255s.
  107. Moran, D.; Simmonett, A. C.; Leach, F. E.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F., III, "Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar," J. Am. Chem. Soc., 2006, 128, 9342-9343, DOI: http://dx.doi.org/10.1021/ja0630285
  108. Baldridge, K. K.; Siegel, J. S., "Stabilization of Benzene Versus Oligoacetylenes: Not Another Scale for Aromaticity," J. Phys. Org. Chem., 2004, 17, 740-742, DOI: 10.1002/poc.819.
  109. Roberts, J. D.; Streitwieser, A. J.; Regan, C. M., "Small-Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-Ring Hydrocarbons and Free Radicals," J. Am. Chem. Soc., 1952, 74, 4579-4582, DOI: 10.1021/ja01138a038.
  110. Schaad, L. J.; Hess, B. A., Jr., "Dewar Resonance Energy," Chem. Rev., 2001, 101, 1465-1476, DOI: 10.1021/cr9903609.
  111. (a) Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960. (b) Wheland, G. W. The Theory of Resonance; J. Wiley: New York, 1944.
  112. Mo, Y.; Schleyer, P. v. R., "An Energetic Measure of Aromaticity and Antiaromaticity Based on the Pauling-Wheland Resonance Energies," Chem. Eur. J., 2006, 12, 2009-2020, DOI: 10.1002/chem.200500376.
  113. Dewar, M. J. S.; De Llano, C., "Ground States of Conjugated Molecules. XI. Improved Treatment of Hydrocarbons," J. Am. Chem. Soc., 1969, 91, 789-795, DOI: 10.1021/ja01032a001.
  114. Schleyer, P. v. R.; Manoharan, M.; Jiao, H.; Stahl, F., "The Acenes: Is There a Relationship between Aromatic Stabilization and Reactivity?," Org. Lett., 2001, 3, 3643-3646, DOI: 10.1021/ol016553b.
  115. Hess, B. A., Jr.; Schaad, L. J., "Ab Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene," J. Am. Chem. Soc., 1983, 105, 7500-7505, DOI: 10.1021/ja00364a600.
  116. Schleyer, P. v. R.; Puhlhofer, F., "Recommendations for the Evaluation of Aromatic Stabilization Energies," Org. Lett., 2002, 4, 2873-2876, DOI: 10.1021/ol0261332.
  117. Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A., Jr.; Schaad, L. J.; Schleyer, P. v. R., "On the Stability of Large [4n]Annulenes," Org. Lett., 2003, 5, 2983-2986, DOI: 10.1021/ol034979f.
  118. Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O., "An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties," J. Am. Chem. Soc., 1997, 119, 12669-12670, DOI: 10.1021/ja9719135.
  119. Gomes, J. A. N. F.; Mallion, R. B., "Aromaticity and Ring Currents," Chem. Rev., 2001, 101, 1349 - 1384, DOI: 10.1021/cr990323h.
  120. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L., "Diamagnetic Susceptibility Exaltation in Hydrocarbons," J. Am. Chem. Soc., 1969, 91, 1991-1998, DOI: 10.1021/ja01036a022.
  121. Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2, p 167-206.
  122. Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A., "The Nuclear Magnetic Resonance Spectroscopy of a Series of Annulenes and Dehydro-annulenes," J. Am. Chem. Soc., 1962, 84, 4307-4312, DOI: 10.1021/ja00881a022.
  123. Stevenson, C. D.; Kurth, T. L., "Isotopic Perturbations in Aromatic Character and New Closely Related Conformers Found in [16]- and [18]Annulene," J. Am. Chem. Soc., 2000, 122, 722-723, DOI: 10.1021/ja993604f.
  124. Wannere, C. S.; Corminboeuf, C.; Allen, W. D.; Schaefer, H. F., III; Schleyer, P. v. R., "Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators," Org. Lett., 2005, 7, 1457-1460, DOI: 10.1021/ol050118q.
  125. Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Viglione, R. G.; Ferraro, M. B.; Zanasi, R.; Lazzeretti, P., "Why Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators," Org. Lett., 2005, 7, 3457-3460, 10.1021/ol051103v.
  126. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E., "Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe," J. Am. Chem. Soc., 1996, 118, 6317-6318, DOI: 10.1021/ja960582d.
  127. Jiao, H.; Schleyer, P. v. R.; Mo, Y.; McAllister, M. A.; Tidwell, T. T., "Magnetic Evidence for the Aromaticity and Antiaromaticity of Charged Fluorenyl, Indenyl, and Cyclopentadienyl Systems," J. Am. Chem. Soc., 1997, 119, 7075-7083, DOI: 10.1021/ja970380x.
  128. Williams, R. V.; Armantrout, J. R.; Twamley, B.; Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S., "A Theoretical and Experimental Scale of Aromaticity. The First Nucleus-Independent Chemical Shifts (NICS) Study of the Dimethyldihydropyrene Nucleus," J. Am. Chem. Soc., 2002, 124, 13495-13505, DOI: 10.1021/ja020595t.
  129. Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R., "Which NICS Aromaticity Index for Planar π Rings Is Best?," Org. Lett. 2006, 8, 863-866, DOI: 10.1021/ol0529546.
  130. Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.; Kiran, B.; Jiao, H.; Puchta, R.; van Eikema Hommes, N. J. R., "Dissected Nucleus-Independent Chemical Shift Analysis of Aromaticity and Antiaromaticity," Org. Lett., 2001, 3, 2465-2468, DOI: 10.1021/ol016217v.
  131. Stanger, A., "Nucleus-Independent Chemical Shifts (NICS): Distance Dependence and Revised Criteria for Aromaticity and Antiaromaticity," J. Org. Chem., 2006, 71, 883-893, DOI: 10.1021/jo051746o.
  132. Pople , J. A., "Proton Magnetic Resonance of Hydrocarbons," J. Chem. Phys., 1956, 24, 1111, DOI: 10.1063/1.1742701.
  133. Herges, R.; Jiao, H.; Schleyer, P. v. R., "Magnetic Properties of Aromatic Transition States: The Diels-Alder Reactions," Angew. Chem. Int. Ed. Engl., 1994, 33, 1376-1378, DOI: 10.1002/anie.199413761.
  134. Jiao, H.; Schleyer, P. v. R., "The Cope Rearrangement Transition Structure is not Diradicaloid, but is it Aromatic?," Angew. Chem. Int. Ed. Engl., 1995, 34, 334-337, DOI: 10.1002/anie.199503341.
  135. Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.; Varela-Varela, S. M.; Pena-Gallego, A.; Hermida-Ramon, J. M., "Are Electrocyclization Reactions of (3Z)-1,3,5-Hexatrienone and Nitrogen Derivatives Pseudopericyclic? A DFT Study," J. Org. Chem., 2005, 70, 3921-3928, DOI: 10.1021/jo0477695.
  136. Mart�n-Santamar�a, S.; Lavan, B.; Rzepa, H. S., "H�ckel and M�bius Aromaticity and Trimerous Transition State Behaviour in the Pericyclic Reactions of [10], [14], [16] and [18]Annulenes," J. Chem. Soc., Perkin Trans. 2, 2000, 1415-1417, DOI: 10.1039/b002082f.
  137. Levy, A.; Rakowitz, A.; Mills, N. S., "Dications of Fluorenylidenes. The Effect of Substituent Electronegativity and Position on the Antiaromaticity of Substituted Tetrabenzo[5.5]fulvalene Dications," J. Org. Chem., 2003, 68, 3990-3998, DOI: 10.1021/jo026924h.
  138. Mills, N. S.; Levy, A.; Plummer, B. F., "Antiaromaticity in Fluorenylidene Dications. Experimental and Theoretical Evidence for the Relationship between the HOMO/LUMO Gap and Antiaromaticity," J. Org. Chem., 2004, 69, 6623-6633, DOI: 10.1021/jo0499266.
  139. Dinadayalane, T. C.; Deepa, S.; Reddy, A. S.; Sastry, G. N., "Density Functional Theory Study on the Effect of Substitution and Ring Annelation to the Rim of Corannulene," J. Org. Chem., 2004, 69, 8111-8114, DOI: 10.1021/jo048850a.
  140. Schulman, J. M.; Disch, R. L., "Properties of Phenylene-Based Hydrocarbon Bowls and Archimedene," J. Phys. Chem. A, 2005, 109, 6947-6952, DOI: 10.1021/jp058088w.
  141. Kavitha, K.; Manoharan, M.; Venuvanalingam, P., "1,3-Dipolar Reactions Involving Corannulene: How Does Its Rim and Spoke Addition Vary?," J. Org. Chem., 2005, 70, 2528-2536, DOI: 10.1021/jo0480693.
  142. Masamune, S.; Hojo, K.; Hojo, K.; Bigam, G.; Rabenstein, D. L., "Geometry of [10]annulenes," J. Am. Chem. Soc., 1971, 93, 4966-4968, DOI: 10.1021/ja00748a083.
  143. Xie, Y.; Schaefer, H. F., III; Liang, G.; Bowen, J. P., "[10]Annulene: The Wealth of Energetically Low-Lying Structural Isomers of the Same (CH)10 Connectivity," J. Am. Chem. Soc., 1994, 116, 1442-1449, DOI: 10.1021/ja00083a032.
  144. Sulzbach, H. M.; Schleyer, P. v. R.; Jiao, H.; Xie, Y.; Schaefer, H. F., III, "A [10]Annulene Isomer May Be Aromatic, After All!," J. Am. Chem. Soc., 1995, 117, 1369-1373, DOI: 10.1021/ja00109a021.
  145. King, R. A.; Crawford, T. D.; Stanton, J. F.; Schaefer, H. F., III, "Conformations of [10]Annulene: More Bad News for Density Functional Theory and Second-Order Perturbation Theory," J. Am. Chem. Soc., 1999, 121, 10788-10793, DOI: 10.1021/ja991429x.
  146. Sulzbach, H. M.; Schaefer, H. F., III; Klopper, W.; Luthi, H.-P., "Exploring the Boundary between Aromatic and Olefinic Character: Bad News for Second-Order Perturbation Theory and Density Functional Schemes," J. Am. Chem. Soc., 1996, 118, 3519-3520, DOI: http://dx.doi.org/10.1021/ja9538400.
  147. Wannere, C. S.; Sattelmeyer, K. W.; Schaefer, H. F., III, ; Schleyer, P. v. R., "Aromaticity: The Alternating CC Bond Length Structures of [14]-, [18]-, and [22]Annulene," Angew. Chem. Int. Ed., 2004, 43, 4200-4206, DOI: 10.1002/anie.200454188.
  148. Castro, C.; Karney, W. L.; McShane, C. M.; Pemberton, R. P., "[10]Annulene: Bond Shifting and Conformational Mechanisms for Automerization," J. Org. Chem., 2006, 71, DOI: 10.1021/jo0521450.
  149. Price, D. R.; Stanton, J. F., "Computational Study of [10]Annulene NMR Spectra," Org. Lett., 2002, 4, 2809-2811, DOI: 10.1021/ol0200450.
  150. Navarro-V�zquez, A.; Schreiner, P. R., "1,2-Didehydro[10]annulenes: Structures, Aromaticity, and Cyclizations," J. Am. Chem. Soc., 2005, 127, 8150-8159, DOI: 10.1021/ja0507968.
  151. Schleyer, P. v. R.; Jiao, H.; Sulzbach, H. M.; Schaefer, H. F., III, "Highly Aromatic Planar all-cis-[10]Annulene Derivatives," J. Am. Chem. Soc., 1996, 118, 2093-2094, DOI: 10.1021/ja953126i.
  152. Wannere, C. S.; Schleyer, P. v. R., "How Aromatic Are Large (4n + 2) Annulenes?," Org. Lett., 2003, 5, 865-868, DOI: 10.1021/ol027571b.
  153. Longuet-Higgins, H. C.; Salem, L., "Alternation of Bond Lengths in Long Conjugated Chain Molecules," Proc. Roy. Soc. London 1959, A251, 172-185, DOI: 10.1098/rspa.1959.0100.
  154. Chiang, C. C.; Paul, I. C., "Crystal and Molecular Structure of [14]Annulene," J. Am. Chem. Soc., 1972, 94, 4741-4743, DOI: 10.1021/ja00768a058.
  155. Bregman, J.; Hirshfeld, F. L.; Rabinovich, D.; Schmidt, G. M. J., "The Crystal Structure of [18]Annulene. I. X-ray study," Acta Cryst. 1965, 19, 227-234.
  156. Gorter, S.; Rutten-Keulemans, E.; Krever, M.; Romers, C.; Cruickshank, D. W. J., "[18]-Annulene, C18H18, Structure, Disorder and Hueckel's 4n + 2 rule," Acta Crystallogr. B, 1995, 51, 1036-1045, DOI: 10.1107/S0108768195004927.
  157. Choi, C. H.; Kertesz, M.; Karpfen, A., "Do Localized Structures of [14]- and [18]Annulenes Exist?," J. Am. Chem. Soc., 1997, 119, 11994-11995, DOI: 10.1021/ja971035a.
  158. Baldridge, K. K.; Siegel, J. S., "Ab Initio Density Funtional vs Hartree Fock Predictions for the Structure of [18]Annulene: Evidence for Bond Localization and Diminished Ring Currents in Bicycloannelated [18]Annulenes," Angew. Chem. Int. Ed. Engl, 1997, 36, 745-748, DOI: 10.1002/anie.199707451.
  159. Oth, J. F. M., "Conformational Mobility and Fast Bond Shift in the Annulenes," Pure Appl. Chem., 1971, 25, 573-622.
  160. Heilbronner, E., "H�ckel Molecular Orbitals of M�bius-Type Conformations of Annulenes," Tetrahedron Lett., 1964, 5, 1923-1928, DOI: 10.1016/S0040-4039(01)89474-0.
  161. Rzepa, H. S., "M�bius Aromaticity and Delocalization," Chem. Rev., 2005, 105, 3697 - 3715, DOI: 10.1021/cr030092l.
  162. Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. v. R., "Aromaticity with a Twist: M�bius [4n]Annulenes," 2002, 4, 3431-3434, DOI: 10.1021/ol026610g.
  163. Ajami, D.; Oeckler, O.; Simon, A.; Herges, R., "Synthesis of a M�bius Aromatic Hydrocarbon," Nature, 2003, 426, 819-821, DOI: 10.1038/nature02224.
  164. Castro, C.; Chen, Z.; Wannere, C. S.; Jiao, H.; Karney, W. L.; Mauksch, M.; Puchta, R.; Hommes, N. J. R. v. E.; Schleyer, P. v. R., "Investigation of a Putative M�bius Aromatic Hydrocarbon. The Effect of Benzannelation on M�bius [4n]Annulene Aromaticity," J. Am. Chem. Soc., 2005, 127, 2425-2432, DOI: 10.1021/ja0458165.
  165. Clar, E. The Aromatic Sextet; Wiley: London, 1972.
  166. Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R. P., "M�bius Aromaticity in [12]Annulene: Cis-Trans Isomerization via Twist-Coupled Bond Shifting," J. Am. Chem. Soc., 2005, 127, 9704-9705, DOI: 10.1021/ja052447j.
  167. Mills, W. H.; Nixon, I. G., "Stereochemical Influences on Aromatic Substitution. Substitution Derivatives of 5-Hydroxyhydrindene," J. Chem. Soc. 1930, 2510-2524, DOI: 10.1039/jr9300002510.
  168. Siegel, J. S., "Mills-Nixon Effect: Wherefore Art Thou?," Angew. Chem. Int. Ed. Engl., 1994, 33, 1721-1723, DOI: 10.1002/anie.199417211.
  169. Stanger, A., "Strain-Induced Bond Localization. The Heteroatom Case," J. Am. Chem. Soc., 1998, 120, 12034-12040, DOI: 10.1021/ja9819662.
  170. Stanger, A., "Is the Mills-Nixon Effect Real?," J. Am. Chem. Soc., 1991, 113, 8277-8280, DOI: 10.1021/ja00022a012.
  171. Baldridge, K. K.; Siegel, J. S., "Bond Alternation in Triannelated Benzenes: Dissection of Cyclic π from Mills-Nixon Effects," J. Am. Chem. Soc., 1992, 114, 9583-9587, DOI: 10.1021/ja00050a043.
  172. Sakai, S., "Theoretical Study on the Aromaticity of Benzenes Annelated to Small Rings," J. Phys. Chem. A., 2002, 106, 11526-11532, DOI: 10.1021/jp021722a.
  173. Bachrach, S. M., "Aromaticity of Annulated Benzene, Pyridine and Phosphabenzene," J. Organomet. Chem., 2002, 643-644, 39-46, DOI: 10.1016/S0022-328X(01)01144-5.
  174. Boese, R.; Bl�ser, D.; Billups, W. E.; Haley, M. M.; Maulitz, A. H.; Mohler, D. L.; Vollhardt, K. P. C., "The Effect of Fusion of Angular Strained Rings on Benzene: Crystal Structures of 1,2-Dihydrocyclobuta[a]cyclopropa[c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]cyclopropa[e]-, and 1,2,3,4,5,6-Hexahydrotricyclobuta[a,c,e]benzene," Angew. Chem. Int. Ed. Engl., 1994, 33, 313-317, DOI: 10.1002/anie.199403131.
  175. Mo, O.; Yanez, M.; Eckert-Maksic, M.; Maksic, Z. B., "Bent Bonds in Benzocyclopropenes and Their Fluorinated Derivatives," J. Org. Chem., 1995, 60, 1638-1646, DOI: 10.1021/jo00111a023.
  176. B�rgi, H.-B.; Baldridge, K. K.; Hardcastle, K.; Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J., "X-Ray Diffraction Evidence for a Cyclohexatriene Motif in the Molecular Structure of Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after the Refutation of the Mills-Nixon Theory," Angew. Chem. Int. Ed. Engl., 1995, 34, 1454-1456, DOI: 10.1002/anie.199514541.
  177. Diercks, R.; Vollhardt, K. P. C., "Tris(benzocyclobutadieno)benzene, the Triangular [4]Phenylene with a Completely Bond-Fixed Cyclohexatriene Ring: Cobalt-catalyzed Synthesis from Hexaethynylbenzene and Thermal Ring Opening to 1,2:5,6:9,10-Tribenzo-3,4,7,8,11,12-hexadehydro[12]annulene," J. Am. Chem. Soc., 1986, 108, 3150-3152, DOI: 10.1021/ja00271a080.
  178. Boese, R.; Bl�ser, D., "Structures and Deformation Electron Densities of 1,2-Dihydrocyclobutabenzene and 1,2,4,5-Tetrahydrodicyclobuta[a,d]benzene," Angew. Chem. Int. Ed. Engl., 1988, 27, 304-305, DOI: 10.1002/anie.198803041.
  179. Alkorta, I.; Elguero, J., "Can Aromaticity be Described with a Single Parameter? Benzene vs. Cyclohexatriene," New J. Chem., 1999, 23, 951-954, DOI: 10.1039/a904537f.
  180. Schulman, J. M.; Disch, R. L.; Jiao, H.; Schleyer, P. v. R., "Chemical Shifts of the [N]Phenylenes and Related Compounds," J. Phys. Chem. A, 1998, 102, 8051-8055, DOI: 10.1021/jp982271q.
  181. Beckhaus, H.-D.; Faust, R.; Matzger, A. J.; Mohler, D. L.; Rogers, D. W.; Ruchardt, C.; Sawhney, A. K.; Verevkin, S. P.; Vollhardt, K. P. C.; Wolff, S., "The Heat of Hydrogenation of (a) Cyclohexatriene," J. Am. Chem. Soc., 2000, 122, 7819-7820, DOI: 10.1021/ja001274p.