About the Book
Citations
Molecules
Chapter 2 Citations
- Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X.,
"Assessment of Experimental Bond Dissociation Energies Using Composite ab Initio Methods
and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond
Dissociation Energies," J. Chem. Inf. Comput. Sci., 2003,
43, 2005-2013, DOI: 10.1021/ci034033k.
- Blanksby,
S. J.; Ellison, G. B., "Bond Dissociation Energies of Organic
Molecules," Acc. Chem. Res., 2003, 36, 255-263, DOI: 10.1021/ar020230d.
- Henry, D. J.; Parkinson, C.
J.; Mayer, P. M.; Radom, L., "Bond Dissociation Energies and Radical
Stabilization Energies Associated with Substituted Methyl Radicals," J. Phys. Chem. A,
2001, 105, 6750-6756, DOI: 10.1021/jp010442c.
- Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo, Q.-X.,
"Homolytic C-H and N-H Bond Dissociation
Energies of Strained Organic Compounds," J. Org. Chem., 2004, 69, 3129-3138, DOI: 10.1021/jo035306d.
- Yao, X.-Q.; Hou, X.-J.; Jiao, H.; Xiang, H.-W.; Li, Y.-W.,
"Accurate Calculations of Bond Dissociation Enthalpies with Density
Functional Methods," J. Phys. Chem. A, 2003, 107, 9991-9996, DOI: 10.1021/jp0361125.
- Check, C. E.; Gilbert, T. M.,
"Progressive Systematic Underestimation of Reaction Energies by the B3LYP
Model as the Number of C-C Bonds Increases: Why Organic Chemists Should Use
Multiple DFT Models for Calculations Involving Polycarbon
Hydrocarbons," J. Org. Chem., 2005, 70, 9828-9834, DOI: 10.1021/jo051545k.
- Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari,
K., "Assessment of Gaussian-3 and Density Functional Theories for
Enthalpies of Formation of C<sub>1</sub>-C<sub>16</sub>
Alkanes," J. Phys. Chem. A, 2000, 104, 5850-5854, DOI: 10.1021/jp994429s.
- Luo, Y.-R. Handbook of Bond Dissociation
Energies in Organic Compounds; CRC Press: New York, 2002.
- R�chardt, C., "Relations Between Structure and Reactivity
in Free-Radical Chemistry," Angew. Chem. Int. Ed.
Engl., 1970, 9, 830-843, DOI: 10.1002/anie.197008301.
- Izgorodina, E. I.; Coote, M. L.; Radom, L., "Trends in R-X
Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu; X
= H, CH3, OCH3, OH, F): A Surprising Shortcoming of Density Functional Theory,"
J. Phys. Chem. A, 2005, 109, 7558-7566, DOI: 10.1021/jp052021r.
- Coote, M. L.; Pross, A.; Radom, L., "Variable Trends in
R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu)," Org. Lett., 2003,
5, 4689-4692, DOI: 10.1021/ol035860+.
- Matsunaga, N.; Rogers, D. W.; Zavitsas, A. A., "Pauling's Electronegativity Equation
and a New Corollary Accurately Predict Bond Dissociation Enthalpies and Enhance Current Understanding of the
Nature of the Chemical Bond," J. Org. Chem., 2003, 68, 3158-3172, DOI: http://dx.doi.org/10.1021/jo020650g.
- Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U., "Calorimetric and
Equilibrium Studies on Some Stable Nitroxide and Iminoxy Radicals. Approximate Oxygen-Hydrogen Bond
Dissociation Energies in Hydroxylamines and Oximes," J. Am. Chem. Soc., 1973,
95, 8610-8614., DOI: 10.1021/ja00807a018.
- Bordwell, F. G.; Ji, G.-Z., "Equilibrium Acidities and Homolytic Bond Dissociation Energies
of the H-O Bonds in Oximes and Amidoximes," J. Org. Chem., 1992, 57,
3019-3025, DOI: 10.1021/jo00037a014.
- Bordwell, F. G.; Zhang, S., "Structural Effects on Stabilities of Iminoxy Radicals,"
J. Am. Chem. Soc., 1995, 117, 4858-4861, DOI: 10.1021/ja00122a016.
- Pratt, D. A.; Blake, J. A.; Mulder, P.; Walton, J. C.; Korth,
H.-G.; Ingold, K. U., "O-H Bond Dissociation Enthalpies in Oximes: Order Restored,"
J. Am. Chem. Soc., 2004, 126, 10667-10675, DOI: 10.1021/ja047566y.
- Bordwell, F. G.; Liu, W.-Z., "Solvent Effects on Homolytic
Bond Dissociation Energies of Hydroxylic Acids,"
J. Am. Chem. Soc., 1996, 118, 10819-10823, DOI: 10.1021/ja961469q.
- Lias, S. G.; Bartmess, J. E.; Holmes, J. L.; Levin, R. D.;
Mallard, W. G., "Gas-Phase Ion and Neutral Thermochemistry,"
J. Phys. Chem. Ref. Data, 1988, Suppl. 17, 1-81.
- NIST Chemistry WebBook, NIST, 2005, http://webbook.nist.gov/.
- Kollmar, H., "The Stability of Alkyl Anions. A Molecular Orbital Theoretical
Study," J. Am. Chem. Soc., 1978, 100, 2665-2669, DOI: 10.1021/ja00477a016.
- Chandrasekhar, J.; Andrade, J. G.; Schleyer, P. v. R., "Efficient and Accurate Calculation of Anion
Proton Affinities," J. Am. Chem. Soc., 1981, 103, 5609-5612, DOI: 10.1021/ja00408a074.
- Saunders, W. H., Jr., "Ab Initio and Semi-Empirical Investigation of Gas-Phase
Carbon Acidity," J. Phys. Org. Chem.
1994, 7, 268-271, DOI: 10.1002/poc.610070509.
- Burk, P.; Koppel, I. A.; Koppel, I.; Leito, I.; Travnikova,
O., "Critical Test of Performance of B3LYP Functional for Prediction of
Gas-Phase Acidities and Basicities," Chem. Phys. Lett.
2000, 323, 482-489, DOI: 10.1016/S0009-2614(00)00566-2.
- Merrill, G. N.; Kass, S. R., "Calculated Gas-Phase Acidities Using
Density Functional Theory: Is It Reliable?," J. Phys. Chem., 1996, 100, 17465-17471,
DOI: 10.1021/jp961557x.
- Ochterski, J. W.; G. A. Petersson, G. A.; Montgomery, J. A.,
Jr., "A Complete Basis Set Model Chemistry. V. Extensions to Six or More
Heavy Atoms," J. Chem. Phys., 1996, 104, 2598-2619, DOI: 10.1063/1.470985.
- Ochterski, J. W.; Petersson, G. A.; Wiberg,
K. B., "A Comparison of Model Chemistries," J. Am. Chem. Soc., 1995, 117,
11299-11308, DOI: 10.1021/ja00150a030.
- Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K., "Acidity of Organic
Molecules in the Gas Phase and in Aqueous Solvent," J. Phys. Chem. A, 2000, 104,
9619-9624, DOI: 10.1021/jp001938h.
- DePuy, C. H.; Gronert, S.; Barlow, S. E.; Bierbaum, V. M.; Damrauer, R.,
"The Gas-Phase Acidities of the Alkanes," J. Am. Chem. Soc., 1989, 111, 1968-1973,
DOI: 10.1021/ja00188a003.
- Luh, T.-Y.; Stock, L. M., "Kinetic Acidity of Cubane,"
J. Am. Chem. Soc., 1974, 96, 3712-3713, DOI: 10.1021/ja00818a090.
- Ritchie, J. P.; Bachrach, S. M., "Comparison of the Calculated Acidity of Cubane
with That of Other Strained and Unstrained Hydrocarbons," J. Am. Chem. Soc., 1990,
112, 6514-6517, DOI: 10.1021/ja00174a010.
- Hare, M.; Emrick, T.; Eaton, P. E.; Kass,
S. R., "Cubyl Anion Formation and an
Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Cubane," J. Am.
Chem. Soc., 1997, 119, 237-238, DOI: 10.1021/ja9627858.
- Broadus, K. M.; Kass, S. R.; Osswald, T.; Prinzbach, H., "Dodecahedryl
Anion Formation and an Experimental Determination of the Acidity and C-H Bond
Dissociation Energy of Dodecahedrane," J. Am. Chem. Soc., 2000, 122, 10964-10968,
DOI: 10.1021/ja002588f.
- Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass, S. R.,
"Why Does Cyclopropene Have the Acidity of an
Acetylene but the Bond Energy of Methane?," J. Am. Chem. Soc., 2003, 125, 11746-11750,
DOI: 10.1021/ja035725s.
- Manini, P.; Amrein, W.; Gramlich,
V.; Diederich, F., "Expanded Cubane: Synthesis of a Cage Compound with a C56 Core by Acetylenic
Scaffolding and Gas-Phase Transformations into Fullerenes," Angew. Chem. Int. Ed.,
2002, 4339-4343, DOI: 10.1002/1521-3773(20021115)41:22<4339::AID-ANIE4339>3.0.CO;2-8.
- Bachrach, S. M., "Structure, Deprotonation Energy, and Cation Affinity of an Ethynyl-Expanded
Cubane," J. Phys. Chem. A., 2003, 107, 4957-4961, DOI: 10.1021/jp034406k.
- Bachrach, S. M.; Demoin, D. W., "Computational Studies of Ethynyl- and Diethynyl-Expanded
Tetrahedranes, Prismanes, Cubanes, and Adamantanes," J. Org. Chem., 2006, 71,
5105-5116, DOI: 10.1021/jo060240i
- de Visser, S. P.; van der Horst, E.; de Koning,
L. J.; van der Hart, W. J.; Nibbering,
N. M. M., "Characterization of Isomeric C4H5-
Anions in the Gas Phase; Theory and Experiment," J. Mass. Spectrom., 1999, 34,
303-310, DOI: 10.1002/(SICI)1096-9888(199904)34:4<303::AID-JMS753>3.0.CO;2-C.
- Siggel, M. R.; Thomas, T. D., "Why are Organic Acids Stronger Acids than Organic
Alcohols?," J. Am. Chem. Soc., 1986, 108, 4360-4363, DOI: 10.1021/ja00275a022.
- Burk, P.; Schleyer, P. v. R., "Why are Carboxylic Acids Stronger Acids than Alcohols? The
Electrostatic Theory of Siggel�Thomas Revisited," J. Mol. Struct. (THEOCHEM), 2000, 505,
161-167, DOI: 10.1016/S0166-1280(99)00357-7.
- Siggel, M. R. F.; Streitwieser, A. J.; Thomas, T. D.,
"The Role of Resonance and Inductive Effects in the Acidity of Carboxylic
Acids," J. Am. Chem. Soc., 1988, 110, 8022-8028, DOI: http://dx.doi.org/10.1021/ja00232a011.
- Exner, O., "Why are Carboxylic Acids and Phenols Stronger Acids than Alcohols?,"
J. Org. Chem., 1988,
53, 1810-1812, DOI: 10.1021/jo00243a042.
- Dewar, M. J. S.; Krull, K. L., "Acidity of Carboxylic Acids: Due to
Delocalization or Induction?," J. Chem. Soc., Chem. Commun.
1990, 333-334, DOI: 10.1039/C39900000333.
- Perrin, C. L., "Atomic Size Dependence of Bader Electron Populations: Significance for Questions of
Resonance Stabilization," J. Am. Chem. Soc., 1991, 113, 2865-2868, DOI: 10.1021/ja00008a011.
- Hiberty, P. C.; Byrman, C. P., "Role of π-Electron Delocalization in the Enhanced
Acidity of Carboxylic Acids and Enols Relative to Alcohols," J. Am. Chem. Soc., 1995,
117, 9875-9880, DOI: 10.1021/ja00144a013.
- Rablen, P. R., "Is the Acetate Anion Stabilized by Resonance or Electrostatics? A
Systematic Structural Comparison," J. Am. Chem. Soc., 2000, 122, 357-368, DOI: 10.1021/ja9928475.
- Holt, J.; Karty, J. M., "Origin of the Acidity Enhancement of
Formic Acid over Methanol: Resonance versus Inductive Effects," J. Am. Chem. Soc.,
2003, 125, 2797-2803, DOI: 10.1021/ja020803h.
- Bachrach, S. M.; Hare, M.; Kass, S. R., "Alkali Metal Salts of Dianions: A Theoretical and Experimental
Study of (C6H4)2-M+
(M = Li and Na)," J. Am. Chem. Soc., 1998, 120, 12646-12649, DOI: 10.1021/ja9825478.
- Davico, G. E.; Bierbaum, V. M.; DePuy, C. H.; Ellison, G. B.; Squires, R. R., "The C-H Bond Energy of
Benzene," J. Am. Chem. Soc., 1995,
117, 2590-2599, DOI: 10.1021/ja00114a023.
- Streitwieser, A.; Bachrach, S. M.; Dorigo, A.; Schleyer, P. v. R.
In Lithium Chemistry: A Theoretical and Experimental Overview; Sapse, A.-M., Schleyer, P.
v. R., Eds.; J. Wiley & Sons: New York, 1995.
- Ritchie, J. P., "Bridged and Linear Dilithioacetylenes -
Two Minima on the Potential Energy Surface?," Tetrahedron Lett., 1982, 23, 4999-5002,
DOI: 10.1016/S0040-4039(00)85556-2.
- Lee, S. Y.; Boo, B. H.; Kang, H. K.; Kang, D.; Judai, K.; Nishijo,
J.; Nishi, N., "Reexamination of the Structures and Energies of Li2C2
and Li4C4," Chem. Phys. Lett., 2005,
411, 484-491, DOI: 10.1016/j.cplett.2005.05.123.
- Bolton, E. E.; Schaefer, H. F., III; Laidig, W. D.; Schleyer, P. v. R.,
"Singlet C2H2Li2: Acetylenic
and 1,2-Dilithioethene Isomers. A Remarkably Congested Potential Energy Hypersurface for a Simple Organometallic
System," J. Am. Chem. Soc., 1994, 116, 9602-9612, DOI: 10.1021/ja00100a027.
- Kos, A. J.; Schleyer, P. v. R., "Cyclic 4π Stabilization.
Combined Moebius-Hueckel Aromaticity in Doubly
Lithium Bridged R4C4Li2 systems," J. Am. Chem. Soc.,
1980, 102, 7928-7929, DOI: 10.1021/ja00547a018.
- Ritchie, J. P.; Bachrach, S. M., "Bond Paths and Bond Properties of Carbon-Lithium Bonds,"
J. Am. Chem. Soc., 1987, 109, 5909-5916, DOI:
10.1021/ja00254a004.
- Bachrach, S. M.; Chamberlin, A. C., "Deprotonation of Lithiated
Benzenes," J. Org. Chem., 2004, 69, 2111-2122, DOI: 10.1021/jo035265l.
- Smith, M. B.; March, J. March's Advanced Organic Chemistry:
Reactions, Mechanisms, and Structure; Wiley: New York, 2001.
- Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of
Organic Compounds; 2nd ed.; Chapman and Hall: London, 1986.
- Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.;
Walsh, R., "Additivity Rules for the Estimation
of Thermochemical Properties," Chem. Rev., 1969, 69, 279-324, DOI: 10.1021/cr60259a002.
- Benson, S. W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; 2nd ed.;
Wiley: New York, 1976.
- Wiberg, K. B., "Group Equivalents for Converting ab
initio Energies to Enthalpies of Formation," J. Comp. Chem., 1984, 5, 197-199, DOI: 10.1002/jcc.540050212.
- Ibrahim, M. R.; Schleyer, P. v. R., "Atom Equivalents for Relating ab initio Energies to
Enthalpies of Formation," J. Comp. Chem., 1985, 6, 157-167,
DOI: 10.1002/jcc.540060302.
- Cioslowski, J.; Liu, G.; Piskorz, P., "Computationally
Inexpensive Theoretical Thermochemistry," J. Phys. Chem. A,
1998, 102, 9890-9900, DOI: 10.1021/jp982024m.
- Guthrie, J. P., "Heats of Formation from DFT Calculations: An Examination of Several
Parameterizations," J. Phys. Chem. A
2001, 105, 9196-9202, DOI: 10.1021/jp010355k.
- Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople,
J. A., "Molecular orbital theory of the electronic structure of organic
compounds. V. Molecular theory of bond separation," J. Am. Chem. Soc., 1970, 92,
4796-4801, DOI: 10.1021/ja00719a006.
- George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M., "An
alternative approach to the problem of assessing destabilization energies
(strain energies) in cyclic hydrocarbons," Tetrahedron, 1976, 32, 317-323, DOI: 10.1016/0040-4020(76)80043-9.
- George, P.; Trachtman, M.; Brett, A. M.; Bock, C. W., "Comparison
of various isodesmic and homodesmotic reaction heats with values derived from published ab
initio molecular orbital calculations," J. Chem. Soc., Perkin Trans. 2, 1977,
1036-1047, DOI: 10.1039/P29770001036.
- Bachrach, S. M., "The Group Equivalent Reaction: An Improved Method for Determining Ring Strain
Energy," J. Chem. Ed., 1990, 67, 907-908.
-
- Boatz, J. A.; Gordon, M. S.; Hilderbrandt, R. L.,
"Structure and Bonding in Cycloalkanes and Monosilacycloalkanes," J. Am. Chem. Soc.,
1988, 110, 352-358, DOI: 10.1021/ja00210a005.
- Alcam�, M.; M�, O.; Y��ez, M.,
"G2 ab Initio Calculations on Three-Membered Rings: Role of Hydrogen Atoms," J. Comp. Chem.,
1998, 19, 1072-1086, DOI: 10.1002/(SICI)1096-987X(19980715)19:9<1072::AID-JCC8>3.0.CO;2-N.
- Cremer, D., "Pros and Cons of σ-Aromaticity," Tetrahedron,
1988, 44, 7427-7454, DOI: 10.1016/S0040-4020(01)86238-4.
- Cremer, D.; Gauss, J., "Theoretical Determination of Molecular Structure and Conformation. 20.
Reevaluation of the Strain Energies of Cyclopropane
and Cyclobutane - CC and CH Bond Energies, 1,3 Interactions, and σ-Aromaticity,"
J. Am. Chem. Soc., 1986,
108, 7467-7477, DOI: 10.1021/ja00284a004.
- Baeyer, A. v., "�ber Polyacetylenverbindungen,"
Chem. Ber., 1885, 18, 2269-2281.
- Huisgen, R., "Adolf von Baeyer's Scientific Achievements - a Legacy," Angew. Chem. Int. Ed.
Engl., 1986, 25, 297-311, DOI: 10.1002/anie.198602973.
- Snyder, R. G.; Schachtschneider, J. H., "A Valence Force Field for
Saturated Hydrocarbons," Spectrochim. Acta, 1965, 21, 169-195, DOI: http://dx.doi.org/10.1016/0371-1951(65)80115-1.
- Walsh, A. D., "Structures of Ethylene Oxide, Cyclopropane, and
Related Molecules," Trans. Faraday Soc., 1949,
45, 179-190, DOI: 10.1039/TF9494500179.
- Bader, R. F. W. Atoms in Molecules - A Quantum Theory;
Oxford University Press: Oxford, 1990.
- Pitzer, K. S., "Strain Energies of Cyclic Hydrocarbons," Science, 1945, 101, 672.
- Dunitz, J. D.; Schomaker, V., "The Molecular Structure
of Cyclobutane," J. Chem. Phys., 1952, 20, 1703-1707, DOI: 10.1063/1.1700271.
- (80) Bauld, N. L.; Cessac, J.; Holloway, R. L., "1,3(Nonbonded) Carbon/Carbon
Interactions. The Common Cause of Ring Strain, Puckering, and Inward Methylene Rocking in Cyclobutane
and of Vertical Nonclassical Stabilization, Pyramidalization, Puckering, and outward Methylene rocking in the
Cyclobutyl Cation," J. Am. Chem. Soc., 1977, 99, 8140-8144, DOI: 10.1021/ja00467a003.
- Coulson, C. A.; Moffitt, W. E., "The Properties of Certain Strained
Hydrocarbons," Phil. Mag., 1949, 40, 1-35.
- Baghal-Vayjooee, M. H.; Benson, S. W., "Kinetics and Thermochemistry
of the Reaction Atomic Chlorine + Cyclopropane -> Hydrochloric Acid + Cyclopropyl Radical. Heat of Formation of the
Cyclopropyl radical," J. Am. Chem. Soc., 1979, 101, 2838-2840, DOI: 10.1021/ja00505a005.
- Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N.,
"Kinetics and Thermochemistry of R + HBr -> RH + Br Reactions:
Determinations of the Heat of Formation of C2H5, i-C3H7,
sec-C4H9 and t-C4H9," J. Phys. Chem.,
1992, 96, 9847-9855, DOI: 10.1021/j100203a050.
- Exner, K.; Schleyer, P. v. R., "Theoretical Bond Energies: A Critical
Evaluation," J. Phys. Chem. A., 2001, 105, 3407-3416, DOI: 10.1021/jp004193o.
- Grimme, S., "Theoretical Bond and Strain Energies of Molecules Derived from
Properties of the Charge Density at Bond Critical Points," J. Am. Chem. Soc.,
1996, 118, 1529-1534, DOI: 10.1021/ja9532751.
- Johnson, W. T. G.; Borden, W. T., "Why Are Methylenecyclopropane and
1-Methylcylopropene More "Strained" than Methylcyclopropane?," J. Am. Chem. Soc,
1997, 119, 5930-5933, DOI: 10.1021/ja9638061.
- Bach, R. D.; Dmitrenko, O., "The Effect of Substitutents
on the Strain Energies of Small Ring Compounds," J. Org. Chem., 2002, 67, 2588-2599, DOI: 10.1021/jo016241m.
- Bach, R. D.; Dmitrenko, O., "Strain Energy of Small Ring
Hydrocarbons. Influence of C-H Bond Dissociation Energies," J. Am. Chem. Soc., 2004,
126, 4444-4452, DOI: 10.1021/ja036309a.
- Dewar, M. J. S., "σ-Conjugation and σ-Aromaticity," Bull.
Soc. Chim. Belg., 1979, 88, 957-967.
- Dewar, M. J. S., "Chemical Implications of σ Conjugation," J. Am. Chem. Soc.,
1984, 106, 669-682, DOI: 10.1021//ja00315a036.
- Kraka, E.; Cremer, D., "Theoretical Determination of Molecular Structure and
Conformation. 15. Three-membered Rings: Bent Bonds,
Ring Strain, and Surface Delocalization," J. Am. Chem. Soc., 1985, 107, 3800-3810, DOI: 10.1021/ja00299a009.
- Moran, D.; Manoharan, M.; Heine, T.; Schleyer, P. v. R., "σ-Antiaromaticity
in Cyclobutane, Cubane, and Other Molecules with Saturated Four-Membered
Rings," Org. Lett.. 2003, 5, 23-26, DOI: 10.1021/ol027159w.
- Schleyer, P. v. R.; Jiao, H., "What is Aromaticity?," Pure. Appl. Chem.
1996, 68, 209-218, http://www.iupac.org/publications/pac/1996/pdf/6802x0209.pdf.
- Krygowski, T. M.; Cyra�ski, M. K.; Czarnocki,
Z.; H�felinger, G.; Katritzky, A. R., "Aromaticity: a Theoretical Concept of Immense Practical
Importance," Tetrahedron, 2000, 56, 1783-1796, DOI: 10.1016/S0040-4020(99)00979-5.
- Minkin, V. I.; Glukhovtsev, M. N.; Simkin,
B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; John Wiley & Sons: New York, 1994.
- Schleyer, P. v. R., "Aromaticity," Chem. Rev., 2001, 101, 1115-1566,
DOI: 10.1021/cr0103221.
- Cyranski, M. K., "Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation
of the Methods of Estimating Aromatic Stabilization Energies," Chem. Rev., 2005, 105,
3773 - 3811, DOI: 10.1021/cr0300845.
- Cyranski, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao,
H.; Hohlneicher, G., "Facts and Artifacts about
Aromatic Stability Estimation," Tetrahedron
2003, 59, 1657-1665, DOI: 10.1016/S0040-4020(03)00137-6.
- Hedberg, L.; Hedberg, K.; Cheng, P.-C.; Scott, L. T., "Gas-Phase Molecular Structure of Corannulene,
C20H10. An Electron-Diffraction Study Augmented by ab Initio and Normal Coordinate Calculations,"
J. Phys. Chem. A, 2000, 104, 7689-7694, DOI: 10.1021/jp0015527.
- Choi, C. H.; Kertesz, M., "Bond Length Alternation and
Aromaticity in Large Annulenes," J. Chem. Phys., 1998, 108, 6681-6688,
DOI: 10.102110.1063/1.476083.
-
Aromaticity, Pseudo-aromaticiy, Anti-aromaticity, Proceedings of an International Symposium; Bergmann, E. D.; Pullman, B.,
Eds.; Israel Academy of Sciences and Humanities: Jerusalem, 1971; p. 33.
- Katritzky, A. R.; Barczynski, P.;
Musumarra, G.; Pisano, D.; Szafran, M., "Aromaticity as a quantitative concept. 1. A statistical
demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered
heterocycles," J. Am. Chem. Soc., 1989, 111, 7-15, DOI: 10.1021/ja00183a002.
- Jug, K.; Koester, A. M., "Aromaticity as a Multi-Dimensional Phenomenon,"
J. Phys. Org. Chem., 1991, 4, 163-169.
- Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B.,
"Aromaticity and Antiaromaticity in Five-Membered C4H4X Ring Systems: Classical and Magnetic
Concepts May Not Be Orthogonal," Angew. Chem. Int. Ed. Engl., 1995, 34, 337-340,
DOI: 10.1002/anie.199503371.
- Katritzky, A. R.; Karelson, M.; Sild, S.; Krygowski, T. M.; Jug,
K., "Aromaticity as a Quantitative Concept. 7. Aromaticity
Reaffirmed as a Multidimensional Characteristic," J. Org. Chem., 1998, 63, 5228-5231,
DOI: 10.1021/jo970939b.
- Cyranski, M. K.; Krygowski, T. M.; Katritzky,
A. R.; Schleyer, P. v. R., "To What Extent Can Aromaticity Be Defined
Uniquely?," J. Org. Chem., 2002, 67, 1333-1338, DOI: 10.1021/jo016255s.
- Moran, D.; Simmonett, A. C.; Leach, F. E.; Allen, W. D.; Schleyer, P.
v. R.; Schaefer, H. F., III, "Popular Theoretical Methods Predict Benzene
and Arenes To Be Nonplanar,"
J. Am. Chem. Soc., 2006, 128, 9342-9343, DOI: http://dx.doi.org/10.1021/ja0630285
- Baldridge, K. K.; Siegel, J. S., "Stabilization of Benzene Versus Oligoacetylenes:
Not Another Scale for Aromaticity," J.
Phys. Org. Chem., 2004, 17, 740-742, DOI: 10.1002/poc.819.
- Roberts, J. D.; Streitwieser, A. J.; Regan, C. M.,
"Small-Ring Compounds. X. Molecular Orbital Calculations of
Properties of Some Small-Ring Hydrocarbons and Free Radicals," J. Am. Chem. Soc.,
1952, 74, 4579-4582, DOI: 10.1021/ja01138a038.
- Schaad, L. J.; Hess, B. A., Jr., "Dewar Resonance Energy," Chem. Rev.,
2001, 101, 1465-1476, DOI: 10.1021/cr9903609.
- (a) Pauling, L. The Nature of the Chemical Bond;
Cornell University Press: Ithaca, NY, 1960. (b) Wheland, G. W. The
Theory of Resonance; J. Wiley: New York, 1944.
- Mo, Y.; Schleyer, P. v. R., "An Energetic Measure of Aromaticity and Antiaromaticity
Based on the Pauling-Wheland Resonance
Energies," Chem. Eur. J., 2006, 12, 2009-2020, DOI: 10.1002/chem.200500376.
- Dewar, M. J. S.; De Llano,
C., "Ground States of Conjugated Molecules. XI. Improved Treatment of
Hydrocarbons," J. Am. Chem. Soc., 1969, 91, 789-795, DOI: 10.1021/ja01032a001.
- Schleyer, P. v. R.; Manoharan, M.; Jiao, H.; Stahl, F., "The Acenes: Is There a Relationship
between Aromatic
Stabilization and Reactivity?," Org. Lett., 2001, 3, 3643-3646, DOI: 10.1021/ol016553b.
- Hess, B. A., Jr.; Schaad, L. J., "Ab
Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene," J.
Am. Chem. Soc., 1983, 105, 7500-7505, DOI: 10.1021/ja00364a600.
- Schleyer, P. v. R.; Puhlhofer, F., "Recommendations for
the Evaluation of Aromatic Stabilization Energies,"
Org. Lett., 2002, 4, 2873-2876, DOI: 10.1021/ol0261332.
- Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A., Jr.; Schaad, L. J.; Schleyer, P. v. R., "On the Stability
of Large [4n]Annulenes," Org. Lett., 2003, 5, 2983-2986, DOI: 10.1021/ol034979f.
- Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin,
V. G.; Malkina, O., "An Evaluation of the
Aromaticity of Inorganic Rings: Refined Evidence from Magnetic
Properties," J. Am. Chem. Soc., 1997,
119, 12669-12670, DOI: 10.1021/ja9719135.
- Gomes, J. A. N. F.; Mallion, R. B., "Aromaticity and Ring Currents," Chem. Rev.,
2001, 101, 1349 - 1384, DOI: 10.1021/cr990323h.
- Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L., "Diamagnetic Susceptibility
Exaltation in Hydrocarbons," J. Am. Chem. Soc., 1969, 91, 1991-1998, DOI: 10.1021/ja01036a022.
- Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic
Press: New York, 1971; Vol. 2, p 167-206.
- Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni,
Y.; Wolovsky, R.; Bothner-By, A. A., "The Nuclear Magnetic Resonance Spectroscopy of a Series of
Annulenes and Dehydro-annulenes," J. Am. Chem. Soc., 1962,
84, 4307-4312, DOI: 10.1021/ja00881a022.
- Stevenson, C. D.; Kurth, T. L., "Isotopic Perturbations in Aromatic
Character and New Closely Related Conformers Found in [16]-
and [18]Annulene," J. Am. Chem. Soc., 2000, 122, 722-723, DOI: 10.1021/ja993604f.
- Wannere, C. S.; Corminboeuf, C.; Allen, W. D.; Schaefer, H.
F., III; Schleyer, P. v. R., "Downfield Proton Chemical Shifts Are Not
Reliable Aromaticity Indicators," Org. Lett., 2005,
7, 1457-1460, DOI: 10.1021/ol050118q.
- Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Viglione,
R. G.; Ferraro, M. B.; Zanasi, R.; Lazzeretti, P., "Why Downfield Proton Chemical Shifts
Are Not Reliable Aromaticity Indicators," Org. Lett.,
2005, 7, 3457-3460, 10.1021/ol051103v.
- Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao,
H.; Hommes, N. J. R. v. E., "Nucleus-Independent
Chemical Shifts: A Simple and Efficient Aromaticity Probe," J. Am. Chem. Soc.,
1996, 118, 6317-6318, DOI: 10.1021/ja960582d.
- Jiao, H.; Schleyer, P. v.
R.; Mo, Y.; McAllister, M. A.; Tidwell, T. T., "Magnetic Evidence for the
Aromaticity and Antiaromaticity of Charged Fluorenyl, Indenyl, and Cyclopentadienyl Systems,"
J. Am. Chem. Soc., 1997, 119, 7075-7083, DOI: 10.1021/ja970380x.
- Williams, R. V.; Armantrout, J. R.; Twamley, B.;
Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S.,
"A Theoretical and Experimental Scale of Aromaticity. The First
Nucleus-Independent Chemical Shifts (NICS) Study of the Dimethyldihydropyrene
Nucleus," J. Am. Chem. Soc., 2002,
124, 13495-13505, DOI: 10.1021/ja020595t.
- Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf,
C.; Puchta, R.; Schleyer, P. v. R., "Which NICS
Aromaticity Index for Planar π Rings Is Best?," Org. Lett.
2006, 8, 863-866, DOI: 10.1021/ol0529546.
- Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.; Kiran,
B.; Jiao, H.; Puchta, R.; van Eikema Hommes, N. J. R., "Dissected Nucleus-Independent
Chemical Shift Analysis of Aromaticity and Antiaromaticity,"
Org. Lett., 2001, 3, 2465-2468, DOI: 10.1021/ol016217v.
- Stanger, A., "Nucleus-Independent Chemical Shifts (NICS): Distance Dependence and
Revised Criteria for Aromaticity and Antiaromaticity,"
J. Org. Chem., 2006, 71, 883-893, DOI:
10.1021/jo051746o.
- Pople , J. A., "Proton
Magnetic Resonance of Hydrocarbons," J. Chem. Phys., 1956, 24, 1111, DOI: 10.1063/1.1742701.
- Herges, R.; Jiao, H.; Schleyer, P. v. R., "Magnetic Properties of Aromatic
Transition States: The Diels-Alder Reactions," Angew. Chem. Int. Ed. Engl., 1994,
33, 1376-1378, DOI: 10.1002/anie.199413761.
- Jiao, H.; Schleyer, P. v. R., "The Cope Rearrangement Transition Structure is not
Diradicaloid, but is it Aromatic?," Angew. Chem. Int. Ed. Engl., 1995,
34, 334-337, DOI: 10.1002/anie.199503341.
- Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.; Varela-Varela, S. M.; Pena-Gallego,
A.; Hermida-Ramon, J. M., "Are Electrocyclization Reactions of (3Z)-1,3,5-Hexatrienone
and Nitrogen Derivatives Pseudopericyclic? A DFT Study," J. Org. Chem., 2005,
70, 3921-3928, DOI: 10.1021/jo0477695.
- Mart�n-Santamar�a, S.; Lavan, B.; Rzepa, H. S., "H�ckel and M�bius Aromaticity and
Trimerous Transition State Behaviour in the Pericyclic Reactions of [10], [14], [16] and [18]Annulenes," J.
Chem. Soc., Perkin Trans. 2, 2000,
1415-1417, DOI: 10.1039/b002082f.
- Levy, A.; Rakowitz, A.; Mills, N. S., "Dications
of Fluorenylidenes. The Effect of Substituent Electronegativity and Position on the Antiaromaticity
of Substituted Tetrabenzo[5.5]fulvalene Dications,"
J. Org. Chem., 2003, 68, 3990-3998, DOI: 10.1021/jo026924h.
- Mills, N. S.; Levy, A.; Plummer, B. F., "Antiaromaticity
in Fluorenylidene Dications. Experimental and Theoretical Evidence for the Relationship between the
HOMO/LUMO Gap and Antiaromaticity," J. Org. Chem.,
2004, 69, 6623-6633, DOI: 10.1021/jo0499266.
- Dinadayalane, T. C.; Deepa, S.; Reddy, A. S.; Sastry,
G. N., "Density Functional Theory Study on the Effect of Substitution and
Ring Annelation to the Rim of Corannulene," J. Org. Chem.,
2004, 69, 8111-8114, DOI: 10.1021/jo048850a.
- Schulman, J. M.; Disch, R. L., "Properties of Phenylene-Based Hydrocarbon Bowls and Archimedene,"
J. Phys. Chem. A, 2005, 109, 6947-6952, DOI: 10.1021/jp058088w.
- Kavitha, K.; Manoharan, M.; Venuvanalingam,
P., "1,3-Dipolar Reactions Involving Corannulene: How Does Its Rim and Spoke Addition
Vary?," J. Org. Chem., 2005,
70, 2528-2536, DOI: 10.1021/jo0480693.
- Masamune, S.; Hojo, K.; Hojo, K.; Bigam, G.; Rabenstein, D. L.,
"Geometry of [10]annulenes," J. Am. Chem. Soc., 1971,
93, 4966-4968, DOI: 10.1021/ja00748a083.
- Xie, Y.; Schaefer, H. F., III; Liang, G.; Bowen, J. P., "[10]Annulene: The Wealth of
Energetically Low-Lying Structural Isomers of the Same (CH)10 Connectivity,"
J. Am. Chem. Soc., 1994, 116, 1442-1449, DOI: 10.1021/ja00083a032.
- Sulzbach, H. M.; Schleyer, P. v. R.; Jiao, H.; Xie, Y.;
Schaefer, H. F., III, "A [10]Annulene Isomer May
Be Aromatic, After All!," J. Am. Chem. Soc., 1995, 117, 1369-1373, DOI: 10.1021/ja00109a021.
- King, R. A.; Crawford, T. D.; Stanton, J. F.; Schaefer, H. F., III, "Conformations of
[10]Annulene: More Bad News for Density Functional Theory and Second-Order Perturbation Theory,"
J. Am. Chem. Soc., 1999, 121, 10788-10793, DOI: 10.1021/ja991429x.
- Sulzbach, H. M.; Schaefer, H. F., III; Klopper, W.; Luthi, H.-P., "Exploring the Boundary
between Aromatic and Olefinic Character: Bad News for Second-Order
Perturbation Theory and Density Functional Schemes," J. Am. Chem. Soc., 1996, 118, 3519-3520, DOI: http://dx.doi.org/10.1021/ja9538400.
- Wannere, C. S.; Sattelmeyer, K. W.; Schaefer, H. F., III, ;
Schleyer, P. v. R., "Aromaticity: The Alternating CC Bond Length
Structures of [14]-, [18]-, and [22]Annulene," Angew. Chem. Int. Ed.,
2004, 43, 4200-4206, DOI: 10.1002/anie.200454188.
- Castro, C.; Karney, W. L.; McShane, C. M.;
Pemberton, R. P., "[10]Annulene: Bond Shifting and Conformational Mechanisms for Automerization,"
J. Org. Chem., 2006, 71, DOI: 10.1021/jo0521450.
- Price, D. R.; Stanton, J. F., "Computational Study of [10]Annulene
NMR Spectra," Org. Lett., 2002, 4, 2809-2811, DOI: 10.1021/ol0200450.
- Navarro-V�zquez, A.; Schreiner, P. R., "1,2-Didehydro[10]annulenes: Structures, Aromaticity, and Cyclizations,"
J. Am. Chem. Soc., 2005,
127, 8150-8159, DOI: 10.1021/ja0507968.
- Schleyer, P. v. R.; Jiao, H.; Sulzbach, H. M.; Schaefer, H. F., III,
"Highly Aromatic Planar all-cis-[10]Annulene Derivatives," J. Am. Chem. Soc.,
1996, 118, 2093-2094, DOI: 10.1021/ja953126i.
- Wannere, C. S.; Schleyer, P. v. R., "How Aromatic Are Large (4n + 2) Annulenes?," Org. Lett.,
2003, 5, 865-868, DOI: 10.1021/ol027571b.
- Longuet-Higgins, H. C.; Salem, L., "Alternation of Bond Lengths in Long Conjugated Chain Molecules,"
Proc. Roy. Soc. London 1959, A251, 172-185, DOI: 10.1098/rspa.1959.0100.
- Chiang, C. C.; Paul, I. C., "Crystal and Molecular Structure of [14]Annulene," J.
Am. Chem. Soc., 1972, 94, 4741-4743, DOI: 10.1021/ja00768a058.
- Bregman, J.; Hirshfeld, F. L.; Rabinovich,
D.; Schmidt, G. M. J., "The Crystal Structure of [18]Annulene. I. X-ray study," Acta Cryst.
1965, 19, 227-234.
- Gorter, S.; Rutten-Keulemans, E.; Krever, M.; Romers, C.;
Cruickshank, D. W. J., "[18]-Annulene, C18H18,
Structure, Disorder and Hueckel's 4n + 2 rule," Acta Crystallogr. B, 1995,
51, 1036-1045, DOI: 10.1107/S0108768195004927.
- Choi, C. H.; Kertesz, M.; Karpfen,
A., "Do Localized Structures of [14]- and [18]Annulenes Exist?," J. Am. Chem. Soc.,
1997, 119, 11994-11995, DOI: 10.1021/ja971035a.
- Baldridge, K. K.; Siegel, J. S., "Ab Initio Density Funtional vs Hartree
Fock Predictions for the Structure of [18]Annulene: Evidence for Bond
Localization and Diminished Ring Currents in Bicycloannelated
[18]Annulenes," Angew. Chem. Int. Ed. Engl, 1997,
36, 745-748, DOI: 10.1002/anie.199707451.
- Oth, J. F. M., "Conformational Mobility and Fast Bond Shift in the Annulenes," Pure
Appl. Chem., 1971, 25, 573-622.
- Heilbronner, E., "H�ckel Molecular Orbitals of M�bius-Type Conformations of Annulenes,"
Tetrahedron Lett., 1964, 5, 1923-1928, DOI: 10.1016/S0040-4039(01)89474-0.
- Rzepa, H. S., "M�bius Aromaticity and Delocalization," Chem. Rev.,
2005, 105, 3697 - 3715, DOI: 10.1021/cr030092l.
- Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. v. R., "Aromaticity with a
Twist: M�bius [4n]Annulenes," 2002, 4, 3431-3434, DOI: 10.1021/ol026610g.
- Ajami, D.; Oeckler, O.; Simon, A.; Herges, R., "Synthesis of a M�bius Aromatic Hydrocarbon,"
Nature, 2003, 426, 819-821, DOI: 10.1038/nature02224.
- Castro, C.; Chen, Z.; Wannere, C. S.; Jiao, H.; Karney,
W. L.; Mauksch, M.; Puchta,
R.; Hommes, N. J. R. v. E.; Schleyer, P. v. R., "Investigation of a Putative M�bius Aromatic
Hydrocarbon. The Effect of Benzannelation on M�bius [4n]Annulene
Aromaticity," J. Am. Chem. Soc., 2005,
127, 2425-2432, DOI: 10.1021/ja0458165.
- Clar, E. The Aromatic Sextet; Wiley: London, 1972.
- Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R.
P., "M�bius Aromaticity in [12]Annulene: Cis-Trans Isomerization via Twist-Coupled Bond Shifting,"
J. Am. Chem. Soc., 2005, 127, 9704-9705, DOI: 10.1021/ja052447j.
- Mills, W. H.; Nixon, I. G., "Stereochemical Influences on
Aromatic Substitution. Substitution Derivatives of
5-Hydroxyhydrindene," J. Chem. Soc.
1930, 2510-2524, DOI: 10.1039/jr9300002510.
- Siegel, J. S., "Mills-Nixon Effect: Wherefore Art Thou?,"
Angew. Chem. Int. Ed. Engl., 1994, 33, 1721-1723, DOI: 10.1002/anie.199417211.
- Stanger, A., "Strain-Induced Bond Localization.
The Heteroatom Case," J. Am. Chem. Soc., 1998, 120, 12034-12040, DOI: 10.1021/ja9819662.
- Stanger, A., "Is the Mills-Nixon Effect Real?," J. Am. Chem. Soc.,
1991, 113, 8277-8280, DOI: 10.1021/ja00022a012.
- Baldridge, K. K.; Siegel, J. S., "Bond Alternation in Triannelated
Benzenes: Dissection of Cyclic π from Mills-Nixon Effects," J. Am. Chem.
Soc., 1992, 114, 9583-9587, DOI: 10.1021/ja00050a043.
- Sakai, S., "Theoretical Study on the Aromaticity of Benzenes Annelated
to Small Rings," J. Phys. Chem. A., 2002, 106, 11526-11532, DOI: 10.1021/jp021722a.
- Bachrach, S. M., "Aromaticity of Annulated Benzene, Pyridine and Phosphabenzene,"
J. Organomet. Chem., 2002, 643-644, 39-46,
DOI: 10.1016/S0022-328X(01)01144-5.
- Boese, R.; Bl�ser, D.; Billups, W. E.; Haley, M. M.; Maulitz, A. H.; Mohler,
D. L.; Vollhardt, K. P. C., "The Effect of Fusion of Angular Strained Rings on Benzene: Crystal Structures of
1,2-Dihydrocyclobuta[a]cyclopropa[c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]-,
1,2,3,4-Tetrahydrodicyclobuta[a,c]cyclopropa[e]-, and 1,2,3,4,5,6-Hexahydrotricyclobuta[a,c,e]benzene,"
Angew. Chem. Int. Ed. Engl., 1994, 33, 313-317, DOI: 10.1002/anie.199403131.
- Mo, O.; Yanez, M.; Eckert-Maksic, M.; Maksic, Z. B., "Bent Bonds in Benzocyclopropenes and
Their Fluorinated Derivatives," J. Org. Chem., 1995, 60, 1638-1646, DOI: 10.1021/jo00111a023.
- B�rgi, H.-B.; Baldridge, K. K.; Hardcastle,
K.; Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J., "X-Ray Diffraction Evidence for a
Cyclohexatriene Motif in the Molecular Structure of Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after
the Refutation of the Mills-Nixon Theory," Angew. Chem. Int. Ed. Engl., 1995, 34, 1454-1456, DOI: 10.1002/anie.199514541.
- Diercks, R.; Vollhardt, K. P. C., "Tris(benzocyclobutadieno)benzene, the Triangular
[4]Phenylene with a Completely Bond-Fixed Cyclohexatriene Ring: Cobalt-catalyzed Synthesis from
Hexaethynylbenzene and Thermal Ring Opening to 1,2:5,6:9,10-Tribenzo-3,4,7,8,11,12-hexadehydro[12]annulene,"
J. Am. Chem. Soc., 1986, 108, 3150-3152, DOI: 10.1021/ja00271a080.
- Boese, R.; Bl�ser, D., "Structures and Deformation Electron Densities of 1,2-Dihydrocyclobutabenzene and
1,2,4,5-Tetrahydrodicyclobuta[a,d]benzene," Angew. Chem. Int. Ed. Engl., 1988,
27, 304-305, DOI: 10.1002/anie.198803041.
- Alkorta, I.; Elguero, J., "Can Aromaticity be Described with a Single Parameter? Benzene vs.
Cyclohexatriene," New J. Chem., 1999, 23, 951-954, DOI: 10.1039/a904537f.
- Schulman, J. M.; Disch, R. L.; Jiao, H.; Schleyer, P. v. R., "Chemical
Shifts of the [N]Phenylenes
and Related Compounds," J. Phys. Chem. A, 1998, 102, 8051-8055, DOI: 10.1021/jp982271q.
- Beckhaus, H.-D.; Faust, R.; Matzger, A. J.; Mohler, D. L.; Rogers, D. W.; Ruchardt, C.; Sawhney, A. K.;
Verevkin, S. P.; Vollhardt, K. P. C.; Wolff, S., "The Heat of
Hydrogenation of (a) Cyclohexatriene," J. Am. Chem. Soc., 2000, 122, 7819-7820, DOI: 10.1021/ja001274p.