Chapter 4 Citations

  1. Reactive Intermediate Chemistry; Moss, R. A.; Platz, M. S.; Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004.
  2. Salem, L.; Rowland, C., "The Electronic Properties of Diradicals," Angew. Chem. Int. Ed. Engl., 1972, 11, 92-111, DOI: 10.1002/anie.197200921.
  3. Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford, 1986.
  4. Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L., "Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals," J. Phys. Chem. A, 2001, 105, 6750-6756, DOI: 10.1021/jp010442c.
  5. Radicals in Organic Synthesis; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001.
  6. Newcomb, M. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p 122-163.
  7. Diradicals; Borden, W. T., Ed.; John Wiley & Sons: New York, 1982.
  8. Rajca, A., "Organic Diradicals and Polyradicals: From Spin Coupling to Magnetism?," Chem. Rev., 1994, 94, 871-893, DOI: http://dx.doi.org/10.1021/cr00028a002.
  9. Berson, J. A., "Diradicals: Conceptual, Inferential, and Direct Methods for the Study of Chemical Reactions," Science 1994, 266, 1338-1339, DOI: 10.1126/science.266.5189.1338
  10. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 1.
  11. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press: Greenwich, CT, 1998; Vol. 2.
  12. Advances in Carbene Chemistry; Brinker, U. H., Ed.; Elsevier Science: Amsterdam, 2001; Vol. 3.
  13. Berson, J. A. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones Jr., M., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p. 165-203.
  14. Jones, M., Jr.; Moss, R. A. In Reactive Intermediate Chemistry; Moss, R. A., Platz, W. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p. 273-328.
  15. Tomioka, H. In Reactive Intermediate Chemistry; Moss, R. A., Platz, W. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p. 375-461.
  16. Goddard, W. A., III, "Theoretical Chemistry Comes Alive: Full Partner with Experiment," Science, 1985, 227, 917-923, DOI: 10.1126/science.227.4689.917
  17. Schaefer, H. F., III, "Methylene: A Paradigm for Computational Quantum Chemistry," Science, 1986, 231, 1100-1107, DOI: 10.1126/science.231.4742.1100
  18. Herzberg, G.; Shoosmith, J., "Spectrum and Structure of the Free Methylene Radical," Nature, 1959, 183, 1801-1802, DOI: 10.1038/1831801a0.
  19. Herzberg, G., "The Spectra and Structure of Free Methyl and Free Methylene," Proc. Roy. Soc. A, 1961, 262, 291-317, DOI: 10.1098/rspa.1961.0120.
  20. Herzberg, G.; Johns, J. W. C., "The Spectrum and Structure of Singlet CH2," Proc. Roy. Soc., A, 1966, 295, 107-128, DOI: 10.1098/rspa.1966.0229.
  21. Foster, J. M.; Boys, S. F., "Quantum Variational Calculations for a Range of CH2 Configurations," Rev. Mod. Phys., 1960, 32, 305-307, DOI: 10.1103/RevModPhys.32.305.
  22. Jordan, P. C. H.; Longuet-Higgins, H. C., "The Lower Electronic Levels of the Radicals CH, CH2, CH3, NH, NH2, BH, BH2, and BH3," Mol. Phys., 1962, 5, 121-138.
  23. Bender, C. F.; Schaefer, H. F., III, "New Theoretical Evidence for the Nonlinearlity of the Triplet Ground State of Methylene," J. Am. Chem. Soc., 1970, 92, 4984-4985, DOI: 10.1021/ja00719a039.
  24. Bernheim, R. A.; Bernard, H. W.; Wang, P. S.; Wood, L. S.; Skell, P. S., "Electron Paramagnetic Resonance of Triplet CH2," J. Chem. Phys., 1970, 53, 1280-1281, DOI: 10.1063/1.1674129.
  25. Wasserman, E.; Yager, W. A.; Kuck, V. J., "EPR of CH2: a Substiantially Bent and Partially Rotating Ground State Triplet," Chem. Phys. Lett., 1970, 7, 409-413, DOI: http://dx.doi.org/10.1016/0009-2614(70)80320-7.
  26. Herzberg, G.; Johns, J. W. C., "On the Structure of CH2 in its Triplet Ground State," J. Chem. Phys., 1971, 54, 2276-2278, DOI: 10.1063/1.1675164.
  27. Jensen, P.; Bunker, P. R., "The Potential Surface and Stretching Frequencies of X, 3B1 Methylene (CH2) Determined from Experiment Using the Morse Oscillator-Rigid Bender Internal Dynamics Hamioltonian," J. Chem. Phys., 1988, 89, 1327-1332, DOI: 10.1063/1.455184.
  28. Yamaguchi, Y.; Sherrill, C. D.; Schaefer, H. F., III, "The X 3B1, a, 1A1, b, 1B1, and c, 1A1 Electronic States of CH2," J. Phys. Chem., 1996, 100, 7911-7918, DOI: 10.1021/jp953150i.
  29. Apeloig, Y.; Pauncz, R.; Karni, M.; West, R.; Steiner, W.; Chapman, D., "Why is Methylene a Ground State Triplet while Silylene is a Ground State Singlet?," Organometallics, 2003, 22, 3250-3256, DOI: 10.1021/om0302591.
  30. Woon, D. E.; Dunning, T. H., Jr., "Gaussian Basis Sets for Use in J. Chem. Phys., 1995, 103, 4572-4585, DOI: 10.1063/1.470645.
  31. Kalemos, A.; Dunning, T. H., Jr.; Mavridis, A.; Harrison, J. F., "CH2 Revisited," Can. J. Chem., 2004, 82, 684-693, DOI: 10.1139/V04-045.
  32. Worthington, S. E.; Cramer, C. J., "Density Functional Calculations of the Influence of Substitution on Singlet-Triplet Gaps in Carbenes and Vinylidenes," J. Phys. Org. Chem., 1997, 10, 755-767, DOI: 10.1002/(SICI)1099-1395(199710)10:10<755::AID-POC935>3.0.CO;2-P.
  33. Das, D.; Whittenburg, S. L., "Performance of the Hybrid Density Functionals in the Determination of the Geometric Structure, Vibrational Frequency and Singlet-Triplet Energy Separation of CH2, CHF, CF2, CCl2 and CBr2," J. Mol. Struct. (THEOCHEM), 1999, 492, 175-186, DOI: 10.1016/S0166-1280(99)00169-4.
  34. Shavitt, I., "Geometry and Singlet-Triplet Energy Gap in Methylene. A Critical Review of Experimental and Theoretical Determinations," Tetrahedron, 1985, 41, 1531-1542, DOI: 10.1016/S0040-4020(01)96393-8.
  35. Bender, C. F.; Schaefer, H. F., III; Franceschetti, D. R.; Allen, L. C., "Singlet-Triplet Energy Separation, Walsh-Mulliken Diagrams, and Singlet d-Polarization Effects in Methylene," J. Am. Chem. Soc., 1972, 94, 6888-6893, DOI: http://dx.doi.org/10.1021/ja00775a004.
  36. Zittel, P. F.; Ellison, G. B.; O'Neil, S. V.; Herbst, E.; Lineberger, W. C.; Reinhardt, W. P., "Laser Photoelectron Spectrometry of CH2-. Singlet-Triplet Splitting and Electron Affinity of CH2," J. Am. Chem. Soc., 1976, 98, 3731-3732, DOI: 10.1021/ja00428a070.
  37. Harding, L. B.; Goddard, W. A., III, "Ab Initio Studies on the Singlet-Triplet Splitting of Methylene (CH2)," J. Chem. Phys., 1977, 67, 1777-1779, DOI: 10.1063/1.435043.
  38. Lucchese, R. R.; Schaefer, H. F., III, "Extensive Configuration Interaction Studies of the Methylene Singlet-Triplet Separation," J. Am. Chem. Soc., 1977, 99, 6765-6766, DOI: 10.1021/ja00462a054.
  39. Roos, B. O.; Siegbahn, P. M., "Methylene Singlet-Triplet Separation. An ab initio Configuration Interaction Study," J. Am. Chem. Soc., 1977, 99, 7716-7718, DOI: 10.1021/ja00465a057.
  40. Harding, L. B.; Goddard, W. A., III, "Methylene: Ab Initio Vibronic Analysis and Reinterpretation of the Spectroscopic and Negative Ion Photoelectron Experiments," Chem. Phys. Lett. 1978, 55, 217-220, DOI: 10.1016/0009-2614(78)87005-5.
  41. McKellar, R. W.; Bunker, P. R.; Sears, T. J.; Evenson, K. M.; Saykally, R. J.; Langhoff, S. R., "Far Infrared Laser Magnetic Resonance of Singlet Methylene: Singlet-Triplet Perturbations, Singlet-Triplet Transitions, and the Singlet-Triplet Splitting," J. Chem. Phys., 1983, 79, 5251-5264, DOI: 10.1063/1.445713.
  42. Leopold, D. G.; Murray, K. K.; Lineberger, W. C., "Laser Photoelectron Sprectoscopy of Vibrationally Relaxed CH2-: A Reinvestigation of the Singlet-Triplet Splitting in Merthylene," J. Chem. Phys., 1984, 81, 1048-1050, DOI: 10.1063/1.447741.
  43. Schreiner, P. R.; Karney, W. L.; von Rague Schleyer, P.; Borden, W. T.; Hamilton, T. P.; Schaefer, H. F., III, "Carbene Rearrangements Unsurpassed: Details of the C7H6 Potential Energy Surface Revealed," J. Org. Chem., 1996, 61, 7030-7039, DOI: 10.1021/jo960884y.
  44. Demel, O.; Pittner, J.; Carsky, P.; Hubac, I., "Multireference Brillouin-Wigner Coupled Cluster Singles and Doubles Study of the Singlet-Triplet Separation in Alkylcarbenes," J. Phys. Chem. A, 2004, 108, 3125-3128, DOI: 10.1021/jp037135m.
  45. Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C., "Singlet-Triplet Splittings in CX2 (X = F, Cl, Br, I) Dihalocarbenes via Negative Ion Phoetoelectron Spectroscopy," J. Phys. Chem. A, 1999, 103, 8213-8221, DOI: 10.1021/jp992214c.
  46. Gutsev, G. L.; Ziegler, T., "Theoretical Study on Neutral and Anionic Halocarbynes and Halocarbenes," J. Phys. Chem., 1991, 95, 7220-7228, DOI: 10.1021/j100172a024.
  47. Russo, N.; Sicilia, E.; Toscano, M., "Geometries, Singlet-triplet Separations, Dipole Moments, Ionization Potentials, and Vibrational Frequencies in Methylene (CH2) and Halocarbenes (CHF, CF2, CCl2, CBr2, and CCI2)," J. Chem. Phys., 1992, 97, 5031-5036, DOI: 10.1063/1.463857.
  48. Gobbi, A.; Frenking, G., "The Singlet-Triplet Gap of the Halonitrenium Ions NHX+, NX2+ and the Halocarbenes CHX, CX2 (X=F, Cl, Br, I)," J. Chem. Soc., Chem. Commun., 1993, 1162-1164, DOI: 10.1039/C39930001162.
  49. Garcia, V. M.; Castell, O.; Reguero, M.; Caballol, R., "Singlet-Triplet Energy Gap in Halogen-Substituted Carbenes and Silylenes: a Difference-Dedicated Configuration Interaction Calculation," Mol. Phys., 1996, 87, 1395-1404, DOI: 10.1080/00268979650026884.
  50. Barden, C. J.; Schaefer, H. F., III, "The Singlet-Triplet Separation in Dichlorocarbene: A Surprising Difference between Theory and Experiment," J. Chem. Phys., 2000, 112, 6515-6516, DOI: 10.1063/1.481601.
  51. McKee, M. L.; 2]-., [CBr2]-. and [CI2]-.: A Role for Quartet Isodihalocarbene Radical Anions?," J. Phys. Chem. A, 2002, 106, 8495-8497, DOI: 10.1021/jp021282n.
  52. Platz, M. S. In Reactive Intermediate Chemistry; Moss, R. A., Platz, W. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, NJ, 2004, p 501-560.
  53. Huisgen, R.; Vossius, D.; Appl, M., "Thermolysis of Phenyl Azide in Primary Amines; the Constitution of Dibenzamil," Chem. Ber., 1958, 91, 1-12.
  54. Huisgen, R.; Appl, M., "The Mechanism of the Ring Enlargement in the Decomposition of Phenyl Azide in Aniline," Chem. Ber., 1958, 91, 12-21.
  55. Doering, W. v. E.; Odum, R. A., "Ring enlargement in the photolysis of phenyl azide," Tetrahedron, 1966, 22, 81-93, DOI: 10.1016/0040-4020(66)80104-7.
  56. Carroll, S. E.; Nay, B.; Scriven, E. F. V.; Suschitzky, H.; Thomas , D. R., "Decomposition of Aromatic Azides in Ethanethiol," Tetrahedron Lett., 1977, 18, 3175-3178, DOI: 10.1016/S0040-4039(01)83190-7.
  57. Abramovitch, R. A.; Challand, S. R.; Scriven, E. F. V., "Mechanism of Intermolecular Aromatic Substitution by Arylnitrenes," J. Am. Chem. Soc., 1972, 94, 1374-1376, DOI: 10.1021/ja00759a066.
  58. Banks, R. E.; Sparkes, G. R., "Azide chemistry. V. Synthesis of 4-azido-2,3,5,6-tetrafluoro-, 4-azido-3-chloro-2,5,6-trifluoro-, and 4-azido-3,5-dichloro-2,6-difluoropyridine, and thermal reactions of the tetrafluoro compound," J. Chem. Soc., Perkin Trans. 1, 1972, 2964-70, DOI: 10.1039/P19720002964.
  59. Cai, S. X.; J. Glenn, D. J.; Kanskar, M.; Wybourne, M. N.; Keana, J. F. W., "Development of Highly Efficient Deep-UV and Electron Beam Mediated Cross-Linkers: Synthesis and Photolysis of Bis(perfluorophenyl) Azides," Chem. Mater., 1994, 6, 1822-1829, DOI: 10.1021/cm00046a041.
  60. Meijer, E. W.; Nijhuis, S.; van Vroonhoven, V. C. B. M., "Poly-1,2-azepines by the Photopolymerization of Phenyl Azides. Precursors for Conducting Polymer Films," J. Am. Chem. Soc., 1988, 110, 7209-7210, DOI: 10.1021/ja00229a043.
  61. Keana, J. F. W.; Cai, S. X., "New Reagents for Photoaffinity Labeling: Synthesis and Photolysis of Functionalized Perfluorophenyl Azides," J. Org. Chem., 1990, 55, 3640-3647, DOI: 10.1021/jo00298a048.
  62. Schnapp, K. A.; Poe, R.; Leyva, E.; Soundararajan, N.; Platz; S., M., "Exploratory photochemistry of fluorinated aryl azides. Implications for the design of photoaffinity labeling reagents," Bioconjugate Chem., 1993, 4, 172-177<, DOI: 10.1021/bc00020a010.
  63. Kym, P. R.; Anstead, G. M.; Pinney, K. G.; Wilson, S. R.; Katzenellenbogen, J. A., " Molecular structures, conformational analysis, and preferential modes of binding of 3-aroyl-2-arylbenzo[b]thiophene estrogen receptor ligands: LY117018 and aryl azide photoaffinity labeling analogs," J. Med. Chem., 1993, 36, 3910-3922, DOI: 10.1021/jm00076a020.
  64. Kym, P. R.; Carlson, K. E.; Katzenellenbogen, J. A., "Evaluation of a Highly Efficient Aryl Azide Photoaffinity Labeling Reagent for the Progesterone Receptor," Bioconjugate Chem., 1995, 6, 115-122, DOI: 10.1021/bc00031a014.
  65. Kerrigan, S.; Brooks, D. E., "Optimization and Immunological Characterization of a Photochemically Coupled Lysergic Acid Diethylamide (LSD) Immunogen," Bioconjugate Chem., 1998, 9, 596-603, DOI: 10.1021/bc9800320.
  66. Alley, S. C.; Ishmael, F. T.; Jones, A. D.; Benkovic, S. J., " Mapping Protein-Protein Interactions in the Bacteriophage T4 DNA Polymerase Holoenzyme Using a Novel Trifunctional Photo-cross-linking and Affinity Reagent," J. Am. Chem. Soc., 2000, 122, 6126-6127, DOI: 10.1021/ja000591t.
  67. Matzinger, S.; Bally, T.; Patterson, E. V.; McMahon, R. J., "The C7H6 Potential Energy Surface Revisited: Relative Energies and IR Assignment," , 1996, 118, 1535-1542, DOI: 10.1021/ja953579n.
  68. Wong, M. W.; Wentrup, C., "Interconversions of Phenylcarbene, Cycloheptatetraene, Fulvenallene, Benzocyclopropene. A Theoretical Study of the C7H6 Surface," J. Org. Chem., 1996, 61, 7022-7029, DOI: 10.1021/jo960806a.
  69. Cramer, C. J.; Dulles, F. J.; Falvey, D. E., "Ab Initio Characterization of Phenylnitrenium and Phenylcarbene: Remarkably Different Properties for Isoelectronic Species," J. Am. Chem. Soc., 1994, 116, 9787-9788, DOI: 10.1021/ja00100a069.
  70. Kim, S.-J.; Hamilton, T. P.; Schaefer, H. F., III, "Phenylnitrene: Energetics, Vibrational Frequencies, and Molecular Structure," J. Am. Chem. Soc., 1992, 114, 5349-5355, DOI: 10.1021/ja00039a054.
  71. Hrovat, D. A.; Waali, E. E.; Borden, W. T., "Ab Initio Calculations of the Singlet-Triplet Energy Difference in Phenylnitrene," J. Am. Chem. Soc., 1992, 114, 8698-8699, DOI: 10.1021/ja00048a052.
  72. Karney, W. L.; Borden, W. T., "Ab Initio Study of the Ring Expansion of Phenylnitrene and Comparison with the Ring Expansion of Phenylcarbene," J. Am. Chem. Soc., 1997, 119, 1378-1387, DOI: 10.1021/ja9635241.
  73. Travers, M. J.; Cowles, D. C.; Clifford, E. P.; Ellison, G. B., "Photoelectron Spectroscopy of the Phenylnitrene Anion," J. Am. Chem. Soc., 1992, 114, 8699-8701, DOI: 10.1021/ja00048a053.
  74. Karney, W. L.; Borden, W. T. In Advances in Carbene Chemistry; Brinker, U. H., Ed.; Elsevier Science: Amsterdam, 2001; Vol. 3, p 205-251.
  75. Johnson, W. T. G.; Sullivan, M. B.; Cramer, C. J., "meta and para Substitution Effects on the Electronic State Energies and Ring-Expansion Reactivities of Phenylnitrenes," Int. J. Quantum Chem., 2001, 85, 492-508, DOI: 10.1002/qua.1518.
  76. Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S., "The Interplay of Theory and Experiment in the Study of Phenylnitrene," Acc. Chem. Res., 2000, 33, 765-771, DOI: 10.1021/ar990030a.
  77. Engelking, P. C.; Lineberger, W. C., "Laser Photoelectron Spectrometry of NH-: Electron Affinity and Intercombination Energy Difference in NH," J. Chem. Phys., 1976, 65, 4323-4324, DOI: 10.1063/1.432845.
  78. Gritsan, N. P.; Zhu, Z.; Hadad, C. M.; Platz, M. S., "Laser Flash Photolysis and Computational Study of Singlet Phenylnitrene," J. Am. Chem. Soc., 1999, 121, 1202-1207, DOI: 10.1021/ja982661q.
  79. Wentrup, C., "Rearrangements and Interconversions of Carbenes and Nitrenes," Top. Curr. Chem., 1976, 62, 173-251.
  80. Platz, M. S., "Comparison of Phenylcarbene and Phenylnitrene," Acc. Chem. Res., 1995, 28, 487-492, DOI: 10.1021/ar00060a004.
  81. Kemnitz, C. R.; Karney, W. L.; Borden, W. T., " Why Are Nitrenes More Stable than Carbenes? An Ab Initio Study," J. Am. Chem. Soc. 1998, 120, 3499-3503, DOI: 10.1021/ja973935x.
  82. Joines, R. C.; Turner, A. B.; Jones, W. M., "The Rearrangement of Phenylcarbenes to Cycloheptatrienylidenes," J. Am. Chem. Soc., 1969, 91, 7754-7755, DOI: 10.1021/ja50001a045.
  83. West, P. R.; Chapman, O. L.; LeRoux, J. P., "1,2,4,6-Cycloheptatetraene," J. Am. Chem. Soc., 1982, 104, 1779-1782, DOI: 10.1021/ja00370a074.
  84. McMahon, R. J.; Abelt, C. J.; Chapman, O. L.; Johnson, J. W.; Kreil, C. L.; LeRoux, J. P.; Mooring, A. M.; West; R., P., "1,2,4,6-Cycloheptatetraene: the Key Intermediate in Arylcarbene Interconversions and Related C7H6 Rearrangements," J. Am. Chem. Soc., 1987, 109, 2456-2469, DOI: 10.1021/ja00242a034.
  85. Warmuth, R., "Inner-Phase Stabilization of Reactive Intermediates," Eur. J. Org. Chem., 2001, 423-437, DOI: 10.1002/1099-0690(200102)2001:3<423::AID-EJOC423>3.0.CO;2-2.
  86. Vander Stouw, G.; Kraska, A. R.; Shechter, H., "Rearrangement and Insertion Reactions of 2-Methylbenzylidenes," J. Am. Chem. Soc., 1972, 94, 1655-1661, DOI: 10.1021/ja00760a038.
  87. Baron, W. J.; Jones Jr., M.; Gaspar, P. P., "Interconversion of o-, m- and p-Tolylcarbene," J. Am. Chem. Soc., 1970, , 4739-4740, DOI: 10.1021/ja00718a600.
  88. Albrecht, S. W.; McMahon, R. J., "Photoequilibration of 2-Naphthylcarbene and 2,3-Benzobicyclo[4.1.0]hepta-2,4,6-triene," J. Am. Chem. Soc., 1993, 115, 855-859, DOI: 10.1021/ja00056a005.
  89. Bonvallet, P. A.; McMahon, R. J., "Photoequilibration of 1-Naphthylcarbene and 4,5-Benzobicyclo[4.1.0]hepta-2,4,6-triene," J. Am. Chem. Soc., 1999, 121, 10496-10503, DOI: 10.1021/ja9920157.
  90. Gritsan, N. P.; Gudmundsdottir, A. D.; Tigelaar, D.; Zhu, Z.; Karney, W. L.; Hadad, C. M.; Platz, M. S., "A Laser Flash Photolysis and Quantum Chemical Study of the Fluorinated Derivatives of Singlet Phenylnitrene," J. Am. Chem. Soc., 2001, 123, 1951-1962, DOI: 10.1021/ja9944305.
  91. Tsao, M.-L.; Platz, M. S., "Photochemistry of Ortho, Ortho' Dialkyl Phenyl Azides," J. Am. Chem. Soc., 2003, 125, 12014-12025, DOI: 10.1021/ja035833e.
  92. Andersson, K.; Roos, B. O., "Multiconfigurational Second-Order Perturbation Theory: A Test of Geometries and Binding Energies," Int. J. Quantum Chem., 1993, 45, 591-607, DOI: 10.1002/qua.560450610.
  93. Andersson, K., "Different Forms of the Zeroth-Order Hamiltonian in Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function," Theor. Chim. Acta, 1995, 91, 31-46.
  94. Warmuth, R.; Makowiec, S., "The Phenylnitrene Rearrangement in the Inner Phase of a Hemicarcerand," J. Am. Chem. Soc., 2005, 127, 1084-1085, DOI: 10.1021/ja044557g.
  95. Schrock, A. K.; Schuster, G. B., "Photochemistry of Phenyl Azide: Chemical Properties of the Transient Intermediates," J. Am. Chem. Soc., 1984, , 5228-5234, DOI: 10.1021/ja00330a032.
  96. Li, Y. Z.; Kirby, J. P.; George, M. W.; Poliakoff, M.; Schuster, G. B., "1,2-Didehydroazepines from the photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods," J. Am. Chem. Soc., 1988, 110, 8092-8098, DOI: 10.1021/ja00232a022.
  97. Sitzmann, E. V.; Langan, J.; Eisenthal, K. B., "Intermolecular effects on intersystem crossing studied on the picosecond timescale: the solvent polarity effect on the rate of singlet-to-triplet intersystem crossing of diphenylcarbene," J. Am. Chem. Soc., 1984, 106, 1868-1869, DOI: 10.1021/ja00318a069.
  98. Grasse, P. B.; Brauer, B. E.; Zupancic, J. J.; Kaufmann, K. J.; Schuster, G. B., "Chemical and Physical Properties of Fluorenylidene: Equilibration of the Singlet and Triplet Carbenes," J. Am. Chem. Soc., 1983, 105, 6833-6845, DOI: 10.1021/ja00361a014.
  99. Marcinek, A.; Platz, M. S., "Deduction of the Activation Parameters for Ring Expansion and Intersystem Crossing in Fluorinated Singlet Phenylnitrenes," J. Phys. Chem., 1993, 97, 12674-12677, DOI: 10.1021/j100151a008.
  100. Smith, B. A.; Cramer, C. J., "How Do Different Fluorine Substitution Patterns Affect the Electronic State Energies of Phenylnitrene?," J. Am. Chem. Soc., 1996, 118, 5490-5491, DOI: 10.1021/ja960687g.
  101. Morawietz, J.; Sander, W., "Photochemistry of Fluorinated Phenyl Nitrenes: Matrix Isolation of Fluorinated Azirines," J. Org. Chem., 1996, 61, 4351-4354, DOI: 10.1021/jo960093w.
  102. Sundberg, R. J.; Suter, S. R.; Brenner, M., "Photolysis of o-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates," J. Am. Chem. Soc., 1972, 94, 513-520, DOI: 10.1021/ja00757a032.
  103. Dunkin, I. R.; Donnelly, T.; Lockhart, T. S., "2,6-Dimethylphenylnitrene in Low-Temperature Matrices," Tetrahedron Lett., 1985, 26, 59-362, DOI: 10.1016/S0040-4039(01)80817-0.
  104. Karney, W. L.; Borden, W. T., "Why Does o-Fluorine Substitution Raise the Barrier to Ring Expansion of Phenylnitrene?," J. Am. Chem. Soc., 1997, 119, 3347-3350, DOI: 10.1021/ja9644440.
  105. Levya, E.; Sagredo, R., "Photochemistry of fluorophenyl azides in diethylamine. Nitrene reaction versus ring expansion," Tetrahedron, 1998, 54, 7367-7374, DOI: 10.1016/S0040-4020(98)00403-7.
  106. Gritsan, N. P.; Gudmundsdottir, A. D.; Tigelaar, D.; Platz, M. S., "Laser Flash Photolysis Study of Methyl Derivatives of Phenyl Azide," J. Phys. Chem. A, 1999, 103, 3458-3461, DOI: 10.1021/jp984624r.
  107. Gritsan, N. P.; Likhotvorik, I.; Tsao, M.-L.; Celebi, N.; Platz, M. S.; Karney, W. L.; Kemnitz, C. R.; Borden, W. T., "Ring-Expansion Reaction of Cyano-Substituted Singlet Phenyl Nitrenes: Theoretical Predictions and Kinetic Results from Laser Flash Photolysis and Chemical Trapping Experiments," J. Am. Chem. Soc., 2001, 123, 1425-1433, DOI: 10.1021/ja002594b.
  108. Hund, F., "The Interpretation of Complicated Spectra," Z. Physik, 1925, 22, 345-71.
  109. Borden, W. T.; Davidson, E. R., "Effects of Electron Repulsion in Conjugated Hydrocarbon Diradicals," J. Am. Chem. Soc., 1977, 99, 4587-4594, DOI: 10.1021/ja00456a010.
  110. Borden, W. T. In Diradicals; Borden, W. T., Ed.; John Wiley & Sons: New York, 1982, p 1-72.
  111. Ovchinnikov, A. A., "Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds (Do Organic Ferromagnets Exist?)," Theor. Chim. Acta, 1978, 47, 297-304, DOI: 10.1007/BF00549259.
  112. Miller, J. S.; Epstein, A. J., "Organic and Organometallic Molecular Magnetic Materials - Designer Magnets," Angew. Chem. Int. Ed. Engl., 1994, 33, 385-415, DOI: 10.1002/anie.199403851.
  113. Rajca, A., "From High-Spin Organic Molecules to Organic Polymers with Magnetic Ordering," Chem. Eur. J., 2002, 8, 4834-4841, DOI: 10.1002/1521-3765(20021104)8:21<4834::AID-CHEM4834>3.0.CO;2-E.
  114. Dowd, P.; Chang, W.; Paik, Y. H., "Tetramethyleneethane, a Ground-State Triplet," J. Am. Chem. Soc., 1986, 108, 7416-7417, DOI: 10.1021/ja00283a051.
  115. Du, P.; Borden, W. T., "Ab initio Calculations Predict a Singlet Ground State for Tetramethyleneethane," J. Am. Chem. Soc., 1987, 109, 930-931, DOI: 10.1021/ja00237a066J. Am. Chem. Soc., 1992, 114, 4949)>.
  116. Dowd, P.; Chang, W.; Paik, Y. H., "2,3-Dimethylenecyclohexa-1,3-diene Diradical is a Ground-State Triplet," J. Am. Chem. Soc., 1987, 109, 5284-5285, DOI: 10.1021/ja00251a046.
  117. Roth, W. R.; Kowalczik, U.; Maier, G.; Reisenauer, H. P.; Sustmann, R.; Müller, W., "2,2-Dimethyl-4,5-dimethylene-l,3-cyclopentanediyl," Angew. Chem. Int. Ed. Engl., 1987, 26, 1285-1287, DOI: 10.1002/anie.198712851.
  118. Choi, Y.; Jordan, K. D.; Paik, Y. H.; Chang, W.; Dowd, P., "Ab Initio Calculations of the Geometries and IR Spectra of Two Derivatives of Tetramethyleneethane," J. Am. Chem. Soc., 1988, 110, 7575-7576, DOI: 10.1021/ja00230a068.
  119. Du, P.; Hrovat, D. A.; Borden, W. T., "Ab Initio Calculations of the Singlet-Triplet Energy Separation in 3,4-Dimethylenefuran and Related Diradicals," J. Am. Chem. Soc., 1986, 108, 8086-8087, DOI: 10.1021/ja00285a034.
  120. Nash, J. J.; Dowd, P.; Jordan, K. D., "Theoretical Study of the Low-Lying Triplet and Singlet States of Diradicals: Prediction of Ground-State Multiplicities in Cyclic Analogs of Tetramethyleneethane," J. Am. Chem. Soc., 1992, 114, 10071-10072, DOI: 10.1021/ja00051a055.
  121. Nachtigall, P.; Jordan, K. D., "Theoretical Study of the Low-Lying Triplet and Singlet States of Diradicals. 1. Tetramethyleneethane," J. Am. Chem. Soc., 1992, 114, 4743-4747, DOI: 10.1021/ja00038a042.
  122. Nachtigall, P.; Jordan, K. D., "Theoretical Study of the Low-Lying Triplet and Singlet States of Tetramethyleneethane: Prediction of a Triplet Below Singlet State at the Triplet Equilibrium Geometry," J. Am. Chem. Soc., 1993, 115, 270-271, DOI: http://dx.doi.org/10.1021/ja00054a038.
  123. Clifford, E. P.; Wenthold , P. G.; Lineberger , W. C.; Ellison , G. B.; Wang, C. X.; Grabowski , J. J.; Vila, F.; Jordan, K. D., "Properties of Tetramethyleneethane (TME) as Revealed by Ion Chemistry and Ion Photoelectron Spectroscopy," J. Chem. Soc., Perkin Trans 2, 1998, 1015-1022, DOI: 10.1039/a707322d.
  124. Filatov, M.; Shaik, S., "Tetramethyleneethane (TME) Diradical: Experiment and Density Functional Theory Reach an Agreement," J. Phys. Chem. A., 1999, 103, 8885-8889, DOI: 10.1021/jp9920489.
  125. Rodriguez, E.; Reguero, M.; Caballol, R., "The Controversial Ground State of Tetramethyleneethane. An ab Initio CI Study," J. Phys. Chem. A. 2000, 104, 6253-6258, DOI: 10.1021/jp000278d.
  126. Pittner, J.; Nachtigall, P.; Carsky, P.; Hubac, I., "State-Specific Brillouin-Wigner Multireference Coupled Cluster Study of the Singlet-Triplet Separation in the Tetramethyleneethane Diradical," J. Phys. Chem. A., 2001, 105, 1354-1356, DOI: 10.1021/jp0032199.
  127. Wenk, H. H.; Winkler, M.; Sander, W., "One Century of Aryne Chemistry," Angew. Chem. Int. Ed., 2003, 42, 502-528, DOI: 10.1002/anie.200390151.
  128. Roberts, J. D.; Simmons Jr., H. E.; Carlsmith, L. A.; Vaughan, C. W., "Rearrangement In The Reaction Of Chlorobenzene-1-C14 With Potassium Amide," J. Am. Chem. Soc., 1953, 75, 3290-3291, DOI: 10.1021/ja01109a523.
  129. Berry, R. S.; Spokes, G. N.; Stiles, M., "The Absorption Spectrum of Gaseous Benzyne," J. Am. Chem. Soc., 1962, 84, 3570-3577, DOI: 10.1021/ja00877a031.
  130. Berry, R. S.; Clardy, J.; Schafer, M. E., "Benzyne," J. Am. Chem. Soc., 1964, 86, 2738-2739, DOI: 10.1021/ja01067a057.
  131. Chapman, O. L.; Mattes, K.; McIntosh, C. L.; Pacansky, J.; Calder, G. V.; Orr, G., "Photochemical Transformations. LII. Benzyne," J. Am. Chem. Soc., 1973, 95, 6134-6135, DOI: 10.1021/ja00799a060.
  132. Kukolich, S. G.; Tanjaroon, C.; McCarthy, M. C.; Thaddeus, P., "Microwave Spectrum of o-Benzyne Produced in a Discharge Nozzle," J. Chem. Phys., 2003, 119, 4353-4359, DOI: 10.1063/1.1593015.
  133. Scheiner, A. C.; Schaefer III, H. F.; Bowen Liu, B., "The X1A1 and a3B2 States of o-Benzyne: a Theoretical Characterization of Equilibrium Geometries, Harmonic Vibrational Frequencies, and the Singlet-Triplet Energy Gap," J. Am. Chem. Soc., 1989, 111, 3118-3124, DOI: 10.1021/ja00191a002.
  134. Wentrup, C.; Blanch, R.; Briehl, H.; Gross, G., "Benzyne, Cyclohexyne, and 3-Azacyclohexyne and the Problem of Cycloalkyne versus Cycloalkylideneketene Genesis," J. Am. Chem. Soc., 1988, 110, 1874-1880, DOI: 10.1021/ja00214a034.
  135. Leopold, D. G.; Miller, A. E. S.; Lineberger, W. C., "Determination of the Singlet-Triplet Splitting and Electron Affinity of o-Benzyne by Negative Ion Photoelectron Spectroscopy," J. Am. Chem. Soc., 1986, 108, 1379-1384, DOI: 10.1021/ja00267a003.
  136. Kraka, E.; Cremer, D., "Ortho-, Meta-, and Para-Benzyne. A Comparative CCSD (T) Investigation," Chem. Phys. Lett., 1993, 216, 333-340, DOI: 10.1016/0009-2614(93)90105-A.
  137. Wierschke, S. G.; Nash, J. J.; Squires, R. R., "A Multiconfigurational SCF and Correlation-Consistent CI Study of the Structures, Stabilities, and Singlet-Triplet Splittings of o-, m-, and p-Benzyne," J. Am. Chem. Soc., 1993, 115, 11958-11967, DOI: 10.1021/ja00078a038.
  138. Wenthold, P. G.; Paulino, J. A.; Squires, R. R., "The Absolute Heats of Formation of o-, m-, and p-Benzyne," J. Am. Chem. Soc., 1991, 113, 7414-7415, DOI: 10.1021/ja00019a044.
  139. Riveros, J. M.; Ingemann, S.; Nibbering, N. M. M., "Formation of Gas Phase Solvated Bromine and Iodine Anions in Ion/Molecule Reactions of Halobenzenes. Revised Heat of Formation of Benzyne," J. Am. Chem. Soc., 1991, 113, 1053-1053, DOI: 10.1021/ja00003a055.
  140. Guo, Y.; Grabowski, J. J., "Reactions of the Benzyne Radical Anion in the Gas Phase, the Acidity of the Phenyl Radical, and the Heat of Formation of o-Benzyne," J. Am. Chem. Soc., 1991, 113, 5923-5931, DOI: 10.1021/ja00016a001.
  141. Jones, R. R.; Bergman, R. G., "p-Benzyne. Generation as an Intermediate in a Thermal Isomerization Reaction and Trapping Evidence for the 1,4-Benzenediyl Structure," J. Am. Chem. Soc., 1972, 94, 660-661, DOI: 10.1021/ja00757a071.
  142. Nicolaides, A.; Borden, W. T., "CI calculations on Didehydrobenzenes Predict Heats of Formation for the meta and para Isomers that are Substantially Higher than Previous Experimental Values," J. Am. Chem. Soc., 1993, 115, 11951-11957, DOI: 10.1021/ja00078a037.
  143. Wenthold, P. G.; Squires, R. R., "Biradical Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements. Absolute Heats of Formation of ortho-, meta-, and para-Benzyne," J. Am. Chem. Soc., 1994, 116, 6401-6412, DOI: 10.1021/ja00093a047.
  144. Wenthold, P. G.; Squires, R. R.; Lineberger, W. C., "Ultraviolet Photoelectron Spectroscopy of the o-, m-, and p-Benzyne Negative Ions. Electron Affinities and Singlet-Triplet Splittings for o-, m-, and p-Benzyne," J. Am. Chem. Soc.;, 1998, 120, 5279-5290, DOI: 10.1021/ja9803355.
  145. Cioslowski, J.; Szarecka, A.; Moncrieff, D., "Energetics, Electronic Structures, and Geometries of Didehydroazines," Mol. Phys., 2003, 101, 839 - 858, DOI: 10.1080/0026897021000034512.
  146. Lindh, R.; Lee, T. J.; Bernhardsson, A.; Persson, B. J.; Karlstroem, G., "Extended ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet o-, m-, and p-Benzynes," J. Am. Chem. Soc., 1995, 117, 7186-7194, DOI: 10.1021/ja00132a019.
  147. Cramer, C. J.; Nash, J. J.; Squires, R. R., "A Reinvestigation of Singlet Benzyne Thermochemistry Predicted by CASPT2, Coupled-Cluster and Density Functional Calculations," Chem. Phys. Lett., 1997, 277, 311-320, DOI: 10.1016/S0009-2614(97)00855-5.
  148. Crawford, T. D.; Kraka, E.; Stanton, J. F.; Cremer, D., "Problematic p-Benzyne: Orbital Instabilities, Biradical Character, and Broken Symmetry," J. Chem. Phys. 2001, 114, 10638-10650, DOI: 10.1063/1.1373433.
  149. Gräfenstein, J.; Hjerpe, A. M.; Kraka, E.; Cremer, D., "An Accurate Description of the Bergman Reaction Using Restricted and Unrestricted DFT: Stability Test, Spin Density, and On-Top Pair Density," J. Phys. Chem. A., 2000, 104, 1748-1761, DOI: 10.1021/jp993122q.
  150. Winkler, M.; Sander, W., "The Structure of meta-Benzyne Revisited-A Close Look into σ-Bond Formation," J. Phys. Chem. A., 2001, 105, 10422-10432, DOI: 10.1021/jp012100c.
  151. Kraka, E.; Angladab, J.; Hjerpea, A.; Filatova, M.; Cremer, D., "m-Benzyne and Bicyclo[3.1.0]hexatriene - Which Isomer is more Stable? - A Quantum Chemical Investigation," Chem. Phys. Lett., 2001, 348, 115-125, DOI: 10.1016/S0009-2614(01)01049-1.
  152. Kraka, E.; Cremer, D.; Bucher, G.; Wandel, H.; Sander, W., "A CCSD(T) and DFT Investigation of m-Benzyne and 4-Hydroxy-m-benzyne," Chem. Phys. Lett., 1997, 268, 313-320, DOI: 10.1016/S0009-2614(97)00233-9.
  153. Sander, W.; Exner, M.; Winkler, M.; Balster, A.; Hjerpe, A.; Kraka, E.; Cremer, D., "Vibrational Spectrum of m-Benzyne: A Matrix Isolation and Computational Study," J. Am. Chem. Soc., 2002, 124, 13072-13079, DOI: 10.1021/ja012686g.
  154. Marquardt, R.; Sander, W.; Kraka, E., "1,3-Didehydrobenzene (m-Benzyne)," Angew. Chem. Int. Ed. Engl., 1996, 35, 746-748, DOI: 10.1002/anie.199607461.
  155. Hess Jr., B. A., "Do Bicyclic Forms of m- and p-Benzyne Exist?," Eur. J. Org. Chem. 2001, 2185-2189, DOI: 10.1002/1099-0690(200106)2001:11<2185::AID-EJOC2185>3.0.CO;2-B.
  156. Clauberg, H.; Minsek, D. W.; Chen, P., "Mass and Photoelectron Spectroscopy of C3H2. ΔHf of Singlet Carbenes Deviate from Additivity by Their Singlet-Triplet Gaps," J. Am. Chem. Soc., 1992, 114, 99-107, DOI: 10.1021/ja00027a014.
  157. Blush, J. A.; Clauberg, H.; Kohn, D. W.; Minsek, D. W.; Zhang, X.; Chen, P., "Photoionization Mass and Photoelectron Spectroscopy of Radicals, Carbenes, and Biradicals," Acc. Chem. Res., 1992, 25, 385-392, DOI: 10.1021/ar00021a001.
  158. Chen, P., "Design of Diradical-based Hydrogen Abstraction Agents," Angew. Chem. Int. Ed. Engl., 1996, 35, 1478-1480, DOI: 10.1002/anie.199614781.
  159. Logan, C. F.; Chen, P., "Ab Initio Calculation of Hydrogen Abstraction Reactions of Phenyl Radical and p-Benzyne," J. Am. Chem. Soc., 1996, 118, 2113-2114, DOI: 10.1021/ja953493u.
  160. Schottelius, M. J.; Chen, P., "9,10-Dehydroanthracene: p-Benzyne-Type Biradicals Abstract Hydrogen Unusually Slowly," J. Am. Chem. Soc., 1996, 118, 4896-4903, DOI: 10.1021/ja960181y.
  161. Cramer, C. J.; Squires, R. R., "Prediction of Singlet-Triplet Splittings for Aryne Biradicals from 1H Hyperfine Interactions in Aryl Radicals," J. Phys. Chem. A., 1997, 101, 9191-9194, DOI: 10.1021/jp973119b.
  162. Cramer, C. J., "Bergman, Aza-Bergman, and Protonated Aza-Bergman Cyclizations and Intermediate 2,5-Arynes: Chemistry and Challenges to Computation," J. Am. Chem. Soc., 1998, 120, 6261-6269, DOI: 10.1021/ja9806579.
  163. Kraka, E.; Cremer, D., "The para-Didehydropyridine, para-Didehydropyridinium, and Related Biradicals - a Contribution to the Chemistry of Enediyne Antitumor Drugs," J. Comput. Chem., 2001, 22, 216-229, DOI: 10.1002/1096-987X(20010130)22:2<216::AID-JCC9>3.0.CO;2-X.
  164. Hoffner, J.; Schottelius, M. J.; Feichtinger, D.; Chen, P., "Chemistry of the 2,5-Didehydropyridine Biradical: Computational, Kinetic, and Trapping Studies toward Drug Design," J. Am. Chem. Soc., 1998, 120, 376-385, DOI: 10.1021/ja9730223.
  165. Cramer, C. J.; Debbert, S., "Heteroatomic Substitution in Aromatic Small σ Biradicals: The Six Pyridynes," Chem. Phys. Lett., 1998, 287, 320-326, DOI: 10.1016/S0009-2614(98)00192-4.
  166. Winkler, M.; Cakir, B.; Sander, W., "3,5-Pyridyne-A Heterocyclic meta-Benzyne Derivative," J. Am. Chem. Soc., 2004, 126, 6135-6149, DOI: 10.1021/ja039142u.
  167. Johnson, W. T. G.; Cramer, C. J., "Influence of Hydroxyl Substitution on Benzyne Properties. Quantum Chemical Characterization of the Didehydrophenols," J. Am. Chem. Soc., 2001, 123, 923-928, DOI: 10.1021/ja002250l.
  168. Johnson, W. G.; Cramer, C. J., "Substituent Effects on Benzyne Electronic Structures," J. Phys. Org. Chem., 2001, 14, 597-603, DOI: 10.1002/poc.402.
  169. Amegayibor, F. S.; Nash, J. J.; Lee, A. S.; Thoen, J.; Petzold, C. J.; Kenttamaa, H. I., " Chemical Properties of a para-Benzyne," J. Am. Chem. Soc., 2002, 124, 12066-12067, DOI: 10.1021/ja027633t.
  170. Clark, A. E.; Davidson, E. R., "p-Benzyne Derivatives That Have Exceptionally Small Singlet-Triplet Gaps and Even a Triplet Ground State," J. Org. Chem., 2003, 68, 3387-3396, DOI: 10.1021/jo026824b.
  171. Price, J. M.; Kenttamaa, H. I., "Characterization of Two Chloro-Substituted m-Benzyne Isomers: Effect of Substitution on Reaction Efficiencies and Products," J. Phys. Chem. A., 2003, 107, 8985-8995, DOI: 10.1021/jp035285r.
  172. Fenton, C.; Perry, C. M., "Spotlight on Gemtuzumab Ozogamicin in Acute Myeloid Leukaemia," BioDrugs, 2006, 20, 137-139, DOI: 10.2165/00063030-200620020-00007.
  173. Beckwith, A. L. J., "Regio-Selectivity and Stereo-Selectivity in Radical Reactions," Tetrahedron, 1981, 37, 3073-3100, DOI: 10.1016/S0040-4020(01)98839-8.
  174. Beckwith, A. L. J., "The Pursuit of Selectivity in Radical Reactions," Chem. Soc. Rev., 1993, 143-151, DOI: 10.1039/CS9932200143.
  175. Baldwin, J. E., "Rules for Ring Closure," J. Chem. Soc., Chem. Commun., 1976, 734-736, DOI: 10.1039/C39760000734.
  176. Walling, C.; Cioffari, A., "Cyclization of 5-Hexenyl Radicals," J. Am. Chem. Soc., 1972, 94, 6059-6064, DOI: 10.1021/ja00772a020.
  177. Leach, A. G.; Wang, R.; Wohlhieter, G. E.; Khan, S. I.; Jung, M. E.; Houk, K. N., "Theoretical Elucidation of Kinetic and Thermodynamic Control of Radical Addition Regioselectivity," J. Am. Chem. Soc., 2003, 125, 4271-4278, DOI: 10.1021/ja029342q.
  178. Wong, M. W.; Radom, L., "Radical Addition to Alkenes: An Assessment of Theoretical Procedures," J. Phys. Chem., 1995, 99, 8582-8588, DOI: 10.1021/j100021a021.
  179. Olivella, S.; Sole, A., "Ab Initio, Calculations on the 5-exo versus 6- endo Cyclization of 1,3-Hexadiene-5-yn-1-yl Radical: Formation of the First Aromatic Ring in Hydrocarbon Combustion," J. Am. Chem. Soc., 2000, 122, 11416-11422, DOI: 10.1021/ja001011v.
  180. Beckwith, A. L. J.; Blair, I. A.; Phillipou, G., "Substituent Effects on the Cyclization of Hex-5-enyl Radical," Tetrahedron Lett., 1974, 15, 2251-2254, DOI: 10.1016/S0040-4039(01)92225-7.
  181. Beckwith, A. L. J.; Lawrence, T., "The Effect of Non-Bonded Interactions on the Regioselectivity of Cyclization of the Hex-5-enyl Radical," J. Chem. Soc., Perkin Trans. 2, 1979, 1535-1539, DOI: 10.1039/P29790001535.
  182. Curran, D. P.; Chang, C. T., "Atom Transfer Cyclization Reactions of α-Iodo Esters, Ketones, and Malonates: Examples of Selective 5-Exo, 6-Endo, 6-Exo, and 7-Rndo ring Closures," J. Org. Chem. 1989, 54, 3140-3157, DOI: 10.1021/jo00274a034.
  183. Haney, B. P.; Curran, D. P., "Round Trip Radical Reactions from Acyclic Precursors to Tricyclo[5.3.1.02,6]undecanes. A New Cascade Radical Cyclization Approach to (±)-Isogymnomitrene and (±)-Gymnomitrene," J. Org. Chem., 2000, 65, 2007-2013, DOI: 10.1021/jo9914871.
  184. Jung, M. E.; Rayle, H. L., "Generation of [5.5.n] Tricyclic Ring Systems by Radical-Promoted Inter- and Intramolecular [3 + 2] Cycloadditions," J. Org. Chem., 1997, 62, 4601-4609, DOI: 10.1021/jo9706133.
  185. Glassman, I. Combustion; 3rd ed.; Academic Press: San Diego, 1996.
  186. Wagner, A. F., "The Challenges of Combustion for Chemical Theory," Proceedings of the Combustion Institute, 2002, 29, 1173-1200.
  187. Calcote, H. F., "Mechanisms of Soot Nucleation in Flames - A Critical Review," Combust. Flame, 1981, 42, 215-242, DOI: 10.1016/0010-2180(81)90159-0.
  188. Miller, J. A.; Melius, C. F., "Kinetic and Thermodynamic Issues in the Formation of Aromatic Compounds in Flames of Aliphatic Fuels," Combust. Flame, 1992, 91, 21-39, DOI: 10.1016/0010-2180(92)90124-8.
  189. Kovalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.; Alabugin, I. V., "5-Exo-dig Radical Cyclization of Enediynes: The First Synthesis of Tin-Substituted Benzofulvenes," Org. Lett., 2004, 6, 2457-2460, DOI: 10.1021/ol049122c.
  190. Lenoir, I.; Smith, M. L., "Vinyl Isonitriles in Radical Cascade Reactions: Formation of Cyclopenta-fused Pyridines and Pyrazines," J. Chem. Soc., Perkin Trans. 1, 2000, 641-643, DOI: 10.1039/a908630g.
  191. Rainier, J. D.; Kennedy, A. R., "Cascades to Substituted Indoles," J. Org. Chem., 2000, 65, 6213-6216, DOI: 10.1021/jo000831n.
  192. Boger, D. L.; Coleman, R. S., "Total Synthesis of (±)-N2-(Phenylsulfonyl)-CPI, (±)-CC-1065, (+)-CC-1065, ent-(-)-CC-1065, and the Precise, Functional Agents (±)-CPI-CDPI2, (+)-CPI-CDPI2, and (-)-CPI-CDPI2 [(±)-(3bR*,4aS*)-, (+)-(3bR,4aS)-, and (-)-(3b S,4aR)-deoxy-CC-1065]," J. Am. Chem. Soc., 1988, 4796-4807, DOI: 10.1021/ja00222a043.
  193. Marion, F.; Courillon, C.; Malacria, M., "Radical Cyclization Cascade Involving Ynamides: An Original Access to Nitrogen-Containing Heterocycles," Org. Lett., 2003, 5, 5095-5097, DOI: 10.1021/ol036177q.
  194. Walch, S. P., "Characterization of the Minimum Energy Paths for the Ring Closure Reactions of C4H3 with Acetylene," J. Chem. Phys., 1995, 103, 8544-8547, DOI: 10.1063/1.470164.
  195. Madden, L. K.; Moskaleva, L. V.; Kristyan, S.; Lin, M. C., "Ab Initio MO Study of the Unimolecular Decomposition of the Phenyl Radical," J. Phys. Chem. A, 1997, 101, 6790-6797, DOI: 10.1021/jp970723d.
  196. Alabugin, I. V.; Manoharan, M., "Thermodynamic and Strain Effects in the Competition between 5-Exo-dig and 6-Endo-dig Cyclizations of Vinyl and Aryl Radicals," J. Am. Chem. Soc., 2005, 127, 12583-12594, DOI: 10.1021/ja052677y.
  197. Sha, C.-K.; Zhan, Z.-P.; Wang, F.-S., "Cyclization of Alkenyl Radicals in 5- and 6-(π-Exo)-exo-dig Modes: New Entry to Exo-cyclic Dienes," Org. Lett., 2000, 2, 2011-2013, DOI: 10.1021/ol005785s.