About the Book



  • » Under Construction

Chapter 8 Citations

  1. Carey, F. A. Organic Chemistry; 5th ed.; McGraw-Hill: Boston, 2003.
  2. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; 10th ed.; John Wiley & Sons: Hoboken, NJ, 2011.
  3. Houston, P. L. Chemical Kinetics and Reaction Dynamics; McGraw-Hill: Boston, MA, 2001.
  4. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall: UpperSaddle River, NJ, 1999.
  5. Peslherbe, G. H.; Wang, H.; Hase, W. L. "Monte Carlo Sampling for Classical Trajectory Simulations.," Adv. Chem. Phys. 1999, 105, 171-201, DOI: 10.1002/9780470141649.ch6.
  6. Sun, L.; Hase, W. L. "Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations," Rev. Comput. Chem. 2003, 19, 79-146, DOI: 10.1002/0471466638.ch3.
  7. Carpenter, B. K. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, NJ, 2004, p 925-960.
  8. Carpenter, B. K. "Nonstatistical Dynamics In Thermal Reactions Of Polyatomic Molecules," Ann. Rev. Phys. Chem. 2005, 46, 57-89, DOI: 10.1146/annurev.physchem.56.092503.141240.
  9. Rehbein, J.; Carpenter, B. K. "Do we fully understand what controls chemical selectivity?," Phys. Chem. Chem. Phys. 2011, 13, 20906-20922, DOI: 10.1039/C1CP22565K.
  10. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes: The Art of Scientific Computing; 3rd ed.; Cambridge University Press: Cambridge, UK, 2007.
  11. Helgaker, T.; Uggerud, E.; Aa. Jensen, H. J. "Integration of the Classical Equations of Motion on ab Initio Molecular Potential Energy Surfaces using Gradients and Hessians: Application to Translational Energy Release Upon Fragmentation," Chem. Phys. Lett. 1990, 173, 145-150, DOI: 10.1016/0009-2614(90)80068-O.
  12. Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B. "Ab Initio Classical Trajectories on the Born-Oppenheimer Surface: Hessian-Based Integrators using Fifth-Order Polynomial and Rational Function Fits," J. Chem. Phys. 1999, 111, 3800-3805, DOI: 10.1063/1.480037.
  13. Bakken, V.; Millam, J. M.; Schlegel, H. B. "Ab Initio Classical Trajectories on the Born-Oppenheimer Surface: Updating Methods for Hessian-Based Integrators," J. Chem. Phys. 1999, 111, 8773-8777, DOI: 10.1063/1.480224.
  14. Gonzalez-Lafont, A.; Truong, T. N.; Truhlar, D. G. "Direct Dynamics Calculations with Neglect of Diatomic Differential Overlap Molecular Orbital Theory with Specific Reaction Parameters," J. Phys. Chem. 1991, 95, 4618-4627, DOI: 10.1021/j100165a009.
  15. Hase, W. L.; Buckowski, D. G. "Monte Carlo Sampling of a Microcanonical Ensemble of Classical Harmonic Oscillators," Chem. Phys. Lett. 1980, 74, 284-287, DOI: 10.1016/0009-2614(80)85159-1.
  16. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; 2nd ed.; Wiley: Hoboken, NJ, 2010.
  17. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; 3rd ed.; Harper and Row: New York, 1987.
  18. Kassel, L. S. "The Dynamics of Unimolecular Reactions," Chem. Rev. 1932, 10, 11-25, DOI: 10.1021/cr60035a002.
  19. Marcus, R. A. "Lifetimes of Active Molecules. I," J. Chem. Phys. 1952, 20, 352-354, DOI: 10.1063/1.1700422.
  20. Marcus, R. A. "Lifetimes of Active Molecules. II," J. Chem. Phys. 1952, 20, 355-359 DOI: 10.1063/1.1700423.
  21. Rice, O. K.; Ramsperger, H. C. "Theories of Unimolecular Gas Reactions at Low Pressures," J. Am. Chem. Soc. 1927, 49, 1617-1629, DOI: http://dx.doi.org/10.1021/ja01406a001.
  22. Evans, M. G.; Polanyi, M. "Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution," Trans. Faraday Soc. 1935, 875-894, DOI: 10.1039/TF9353100875
  23. Eyring, H. "The Activated Complex in Chemical Reactions," J. Chem. Phys. 1935, 3, 107-115, DOI: 10.1063/1.1749604.
  24. Truhlar, D. G.; Garrett, B. C. "Variational Transition State Theory," Annu. Rev. Phys. Chem. 1984, 35, 159-189, DOI: 10.1146/annurev.pc.35.100184.001111.
  25. Carpenter, B. K. "Dynamic Matching: The Cause of Inversion of Configuration in the [1,3] Sigmatropic Migration?," J. Am. Chem. Soc. 1995, 117, 6336-6344, DOI: 10.1021/ja00128a024.
  26. Carpenter, B. K. "Bimodal Distribution of Lifetimes for an Intermediate from a Quasiclassical Dynamics Simulation," J. Am. Chem. Soc. 1996, 118, 10329 - 10330, DOI: 10.1021/ja9617707.
  27. Berson, J. A.; Nelson, G. L. "Inversion of Configuration in the Migrating Group of a Thermal 1,3-Sigmatropic Rearrangement," J. Am. Chem. Soc. 1967, 89, 5503-5504, DOI: 10.1021/ja00997a065.
  28. Baldwin, J. E.; Belfield, K. D. "Stereochemistry of the Thermal Isomerization of Bicyclo[3.2.0]hept-2-ene to Bicyclo[2.2.1]hept-2-ene," J. Am. Chem. Soc. 1988, 110, 296-297, DOI: 10.1021/ja00209a051.
  29. Klärner, F. G.; Drewes, R.; Hasselmann, D. "Stereochemistry of the Thermal Rearrangement of Bicyclo[3.2.0]hept-2-ene to bicyclo[2.2.1]hept-2-ene (Norbornene). [1,3] Carbon Migration with Predominant Inversion," J. Am. Chem. Soc. 1988, 110, 297-298, DOI: 10.1021/ja00209a052.
  30. Berson, J. A.; Nelson, G. L. "Steric Prohibition of the Inversion Pathway. Test of the Orbital Symmetry Prediction of the Sense of Rotation in Thermal Suprafacial 1,3-Sigmatropic Rearrangements," J. Am. Chem. Soc. 1970, 92, 1096-1097, DOI: 10.1021/ja00707a078.
  31. Carpenter, B. K. "Dynamic Behavior of Organic Reactive Intermediates," Angew. Chem. Int. Ed. 1998, 37, 3340 - 3350, DOI: 10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1.
  32. Hoffmann, R.; Swaminathan, S.; Odell, B. G.; Gleiter, R. "Potential Surface for a Nonconcerted Reaction. Tetramethylene," J. Am. Chem. Soc. 1970, 92, 7091-7097, DOI: 10.1021/ja00727a013.
  33. Doering, W. v. E.; Sachdev, K. "Continuous Diradical as Transition State. Internal Rotational Preference in the Thermal Enantiomerization and Diastereoisomerization of cis- and trans-1-cyano-2-isopropenylcyclopropane," J. Am. Chem. Soc. 1974, 96, 1168-1187, DOI: 10.1021/ja00811a034.
  34. Doering, W. v. E.; Cheng, X.; Lee, K.; Lin, Z. "Fate of the Intermediate Diradicals in the Caldera: Stereochemistry of Thermal Stereomutations, (2 + 2) Cycloreversions, and (2 + 4) Ring-Enlargements of cis- and trans-1-Cyano-2-(E and Z)-propenyl-cis-3,4-dideuteriocyclobutanes," J. Am. Chem. Soc. 2002, 124, 11642-11652, DOI: 10.1021/ja0206083.
  35. Home Ground, Language for an American Landscape; Lopez, B., Ed.; Trinity University Press: San Antonio, TX, 2006.
  36. Baldwin, J. E.; Villarica, K. A.; Freedberg, D. I.; Anet, F. A. L. "Stereochemistry of the Thermal Isomerization of Vinylcyclopropane to Cyclopentene," J. Am. Chem. Soc 1994, 116, 10845-10846, DOI: 10.1021/ja00102a084.
  37. Gajewski, J. J.; Olson, L. P.; Willcott, M. R. "Evidence for Concert in the Thermal Unimolecular Vinylcyclopropane to Cyclopentene Sigmatropic 1,3-Shift," J. Am. Chem. Soc. 1996, 118, 299-306, DOI: 10.1021/ja951578p.
  38. Davidson, E. R.; Gajewski, J. J. "Calculational Evidence for Lack of Intermediates in the Thermal Unimolecular Vinylcyclopropane to Cyclopentene 1,3-Sigmatropic Shift," J. Am. Chem. Soc. 1997, 119, 10543-10544, DOI: 10.1021/ja9711932.
  39. Houk, K. N.; Nendel, M.; Wiest, O.; Storer, J. W. "The Vinylcyclopropane-Cyclopentene Rearrangement: A Prototype Thermal Rearrangement Involving Competing Diradical Concerted and Stepwise Mechanisms," J. Am. Chem. Soc. 1997, 119, 10545 - 10546, DOI: 10.1021/ja971315q.
  40. Doubleday, C.; Nendel, M.; Houk, K. N.; Thweatt, D.; Page, M. "Direct Dynamics Quasiclassical Trajectory Study of the Stereochemistry of the Vinylcyclopropane-Cyclopentene Rearrangement," J. Am. Chem. Soc. 1999, 121, 4720-4721, DOI: 10.1021/ja984083j.
  41. Doubleday, C. "Mechanism of the Vinylcyclopropane-Cyclopentene Rearrangement Studied by Quasiclassical Direct Dynamics," J. Phys. Chem. A 2001, 105, 6333-6341, DOI: 10.1021/jp010464z.
  42. Berson, J. A.; Dervan, P. B. "Mechanistic Analysis of the Four Pathways in the 1,3-Sigmatropic Rearrangements of trans-1,2-trans, trans- and trans-1,2-cis,trans-Dipropenylcyclobutane," J. Am. Chem. Soc. 1973, 95, 269-270, DOI: 10.1021/ja00782a062.
  43. Northrop, B. H.; Houk, K. N. "Vinylcyclobutane-Cyclohexene Rearrangement: Theoretical Exploration of Mechanism and Relationship to the Diels-Alder Potential Surface," J. Org. Chem. 2006, 71, 3-13, DOI: 10.1021/jo051273l.
  44. Baldwin, J. E.; Leber, P. A. "Molecular rearrangements through thermal [1,3] carbon shifts," Org. Biomol. Chem. 2008, 6, 36-47, DOI: 10.1039/B711494J.
  45. Baldwin, J. E.; Kostikov, A. P. "On the Stereochemical Characteristic of the Thermal Reactions of Vinylcyclobutane," J. Org. Chem. 2010, 75, 2767-2775, DOI: 10.1021/jo1000675.
  46. Doubleday, C.; Suhrada, C. P.; Houk, K. N. "Dynamics of the Degenerate Rearrangement of Bicyclo[3.1.0]hex-2-ene," J. Am. Chem. Soc. 2006, 128, 90-94, DOI: 10.1021/ja050722w.
  47. Baldwin, J. E.; Keliher, E. J. "Activation Parameters for Three Reactions Interconverting Isomeric 4- and 6-Deuteriobicyclo[3.1.0]hex-2-enes," J. Am. Chem. Soc. 2002, 124, 380-381, DOI: 10.1021/ja012258a.
  48. Doering, W. v. E.; Zhang, T.-h.; Schmidt, E. K. G. "Kinetics of Thermal Rearrangements in the Δ2-Thujene System:  A Full Quadrisection of a Perturbed Bicyclo[3.1.0]hex-2-ene," J. Org. Chem. 2006, 71, 5688-5693, DOI: 10.1021/jo0609430.
  49. Doering, W. v. E.; Zhao, X. "Steric Control in the Thermal Rearrangement of a Bicyclo[3.1.0]hex-2-ene Substituted at a Radical-Nonstabilizing Position," J. Am. Chem. Soc. 2008, 130, 6430-6437, DOI: 10.1021/ja7104812.
  50. Suhrada, C. P.; Houk, K. N. "Potential Surface for the Quadruply Degenerate Rearrangement of Bicyclo[3.1.0]hex-2-ene," J. Am. Chem. Soc. 2002, 124, 8796-8797, DOI: 10.1021/ja020601l.
  51. Berson, J. A.; Pedersen, L. D. "Thermal Stereomutation of Optically Active trans-Cyclopropane-1,2-d2," J. Am. Chem. Soc. 1975, 97, 238-240, DOI: 10.1021/ja00834a069.
  52. Cianciosi, S. J.; Ragunathan, N.; Freedman, T. B.; Nafie, L. A.; Lewis, D. K.; Glenar, D. A.; Baldwin, J. E. "Racemization and Geometrical Isomerization of (2S,3S)-Cyclopropane-1-13C-1,2,3-d3 at 407 °C: Kinetically Competitive One-Center and Two-Center Thermal Epimerizations in an Isotopically Substituted Cyclopropane," J. Am. Chem. Soc. 1991, 113, 1864-1866, DOI: 10.1021/ja00005a079.
  53. Hoffmann, R. "Trimethylene and the Addition of Methylene to Ethylene," J. Am. Chem. Soc. 1968, 90, 1475-1485, DOI: 10.1021/ja01008a016.
  54. Doubleday, C. "Lifetime of Trimethylene Calculated by Variational Unimolecular Rate Theory," J. Phys. Chem. 1996, 100, 3520-3526, DOI: 10.1021/jp9528471.
  55. Hrovat, D. A.; Fang, S.; Borden, W. T.; Carpenter, B. K. "Investigation of Cyclopropane Stereomutation by Quasiclassical Trajectories on an Analytical Potential Energy Surface," J. Am. Chem. Soc. 1997, 119, 5253-5254, DOI: 10.1021/ja964238s.
  56. Doubleday, C., Jr.; Bolton, K.; Hase, W. L. "Direct Dynamics Study of the Stereomutation of Cyclopropane," J. Am. Chem. Soc. 1997, 119, 5251-5252, DOI: 10.1021/ja964250k.
  57. Doubleday, C.; Bolton, K.; Hase, W. L. "Direct Dynamics Quasiclassical Trajectory Study of the Thermal Stereomutations of Cyclopropane," J. Phys. Chem. A 1998, 102, 3648-3658, DOI: 10.1021/jp973273y.
  58. Xu, L.; Doubleday, C. E.; Houk, K. N. "Dynamics of 1,3-Dipolar Cycloaddition Reactions of Diazonium Betaines to Acetylene and Ethylene: Bending Vibrations Facilitate Reaction," Angew. Che, Int. Ed. 2009, 48, 2746-2748, DOI: 10.1002/anie.200805906.
  59. Xu, L.; Doubleday, C. E.; Houk, K. N. "Dynamics of 1,3-Dipolar Cycloadditions: Energy Partitioning of Reactants and Quantitation of Synchronicity," J. Am. Chem. Soc. 2010, 132, 3029-3037, DOI: 10.1021/ja909372f.
  60. Roth, W. R.; Martin, M. "Stereochemistry of the Thermal and Photochemical Decomposition of 2,3-Diazabicyclo[2.2.1]hept-2-ene," Justus Liebigs Ann. Chem. 1967, 702, 1-7, DOI: 10.1002/jlac.19677020102.
  61. Roth, W. R.; Martin, M. "Zur Stereochemie der 1.2-Cycloaddition an das Bicyclo[2.1.0]system," Tetrahedron Lett. 1967, 8, 4695-4698, DOI: 10.1016/S0040-4039(01)89583-6.
  62. Allred, E. L.; Smith, R. L. "Thermolysis of exo- and endo-5-Methoxy-2,3-diazabicyclo[2.2.1]-2-heptene," J. Am. Chem. Soc. 1967, 89, 7133-7134, DOI: /10.1021/ja01002a063.
  63. Sorescu, D. C.; Thompson, D. L.; Raff, L. M. "Molecular Dynamics Studies of the Thermal Decomposition of 2,3-Diazabicyclo(2.2.1)hept-2-ene," J. Chem. Phys. 1995, 102, 7911-7924, DOI: 10.1063/1.468990.
  64. Yamamoto, N.; Olivucci, M.; Celani, P.; Bernardi, F.; Robb, M. A. "An MC-SCF/MP2 Study of the Photochemistry of 2,3-Diazabicyclo[2.2.1]hept-2-ene: Production and Fate of Diazenyl and Hydrazonyl Biradicals," J. Am. Chem. Soc. 1998, 120, 2391-2407, DOI: 10.1021/ja971733v.
  65. Reyes, M. B.; Carpenter, B. K. "Mechanism of Thermal Deazetization of 2,3-Diazabicyclo[2.2.1]hept-2-ene and Its Reaction Dynamics in Supercritical Fluids," J. Am. Chem. Soc. 2000, 122, 10163-10176, DOI: 10.1021/ja0016809.
  66. Osterheld, T. H.; Brauman, J. I. "Infrared Multiple-Photon Dissociation of the Acetone Enol Radical Cation. Dependence of Nonstatistical Dissociation on Internal Energy," J. Am. Chem. Soc. 1993, 115, 10311 - 10316, DOI: 10.1021/ja00075a054.
  67. McLafferty, F. W.; McAdoo, D. J.; Smith, J. S.; Kornfeld, R. "Metastable Ions Characteristics. XVIII. Enolic C3H6O+ Ion Formed from Aliphatic Ketones," J. Am. Chem. Soc. 1971, 93, 3720 - 3730, DOI: 10.1021/ja00744a028.
  68. Depke, G.; Lifshitz, C.; Schwarz, H.; Tzidony, E. "Non-Ergodic Behavior of Excited Radical Cations in the Gas Phase," Angew. Chem., Int. Ed. Engl. 1981, 20, 792-793, DOI: 10.1002/anie.198107921.
  69. Turecek, F.; McLafferty, F. W. "Non-ergodic Behavior in Acetone-Enol Ion Dissociations," J. Am. Chem. Soc. 1984, 106, 2525 - 2528, DOI: 10.1021/ja00321a006.
  70. Lifshitz, C. "Intramolecular Energy Redistribution in Polyatomic Ions," J. Phys. Chem. 1983, 87, 2304-2313, DOI: 10.1021/j100236a015.
  71. Nummela, J. A.; Carpenter, B. K. "Nonstatistical Dynamics in Deep Potential Wells: A Quasiclassical Trajectory Study of Methyl Loss from the Acetone Radical Cation," J. Am. Chem. Soc. 2002, 124, 8512-8513, DOI: 10.1021/ja026230q.
  72. Roth, W. R.; Wollweber, D.; Offerhaus, R.; Rekowski, V.; Lennartz, H. W.; Sustmann, R.; M´┐Żller, W. "The Energy Well of Diradicals. IV. 2-Methylene-1,4-cyclohexanediyl," Chem. Ber. 1993, 126, 2701-2715, DOI: 10.1002/cber.19931261221.
  73. Hrovat, D. A.; Duncan, J. A.; Borden, W. T. "Ab Initio and DFT Calculations on the Cope Rearrangement of 1,2,6-Heptatriene," J. Am. Chem. Soc. 1999, 121, 169-175, DOI: 10.1021/ja983032j.
  74. Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. "The Iconoclastic Dynamics of the 1,2,6-Heptatriene Rearrangement," J. Am. Chem. Soc. 2002, 124, 7896-7897, DOI: 10.1021/ja026232a.
  75. McIver, J. W., Jr.; Stanton, R. E. "Symmetry Selection Rules for Transition States," J. Am. Chem. Soc. 1972, 94, 8618-8620, DOI: 10.1021/ja00779a075.
  76. Sun, L.; Song, K.; Hase, W. L. "A SN2 Reaction That Avoids Its Deep Potential Energy Minimum," Science 2002, 296, 875-878, DOI: 10.1126/science.1068053.
  77. Lopez, J. G.; Vayner, G.; Lourderaj, U.; Addepalli, S. V.; Kato, S.; deJong, W. A.; Windus, T. L.; Hase, W. L. "A Direct Dynamics Trajectory Study of F- + CH3OOH Reactive Collisions Reveals a Major Non-IRC Reaction Path," J. Am. Chem. Soc. 2007, 129, 9976-9985, DOI: 10.1021/ja0717360.
  78. Blanksby, S. J.; Ellison, G. B.; Bierbaum, V. M.; Kato, S. "Direct Evidence for Base-Mediated Decomposition of Alkyl Hydroperoxides (ROOH) in the Gas Phase," J. Am. Chem. Soc. 2002, 124, 3196-3197, DOI: 10.1021/ja017658c.
  79. Schmittel, M.; Strittmatter, M.; Kiau, S. "Switching from the Myers Reaction to a New Thermal Cyclization Mode in Enyne-allenes," Tetrahedron Lett. 1995, 36, 4975-4978, DOI: 0040-4039(95)00937-8.
  80. Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. "A Suprising Switch from the Myers-Saito Cyclization toa Novel Biradical Cyclization in Enyne-Allenes: Formal Diels-Alder and Ene Reactions with High Synthetic Potetnial," Chem. Eur. J. 1997, 3, 807-816, DOI: 10.1002/chem.19970030521.
  81. Musch, P. W.; Engels, B. "The Importance of the Ene Reaction for the C2-C6 Cyclization of Enyne-Allenes," J. Am. Chem. Soc. 2001, 123, 5557-5562, DOI: 10.1021/ja010346p.
  82. Bekele, T.; Christian, C. F.; Lipton, M. A.; Singleton, D. A. ""Concerted" Transition State, Stepwise Mechanism. Dynamics Effects in C2-C6 Enyne Allene Cyclizations," J. Am. Chem. Soc. 2005, 127, 9216-9223, DOI: 10.1021/ja0508673.
  83. Achmatowicz, O., Jr.; Szymoniak, J. "Mechanism of the Dimethyl Mesoxalate-Alkene Ene Reaction. Deuterium Kinetic Isotope Effects," J. Org. Chem. 1980, 45, 4774-4776, DOI: 10.1021/jo01311a046.
  84. Song, Z.; Beak, P. "Investigation of the mechanisms of ene reactions of carbonyl enophiles by intermolecular and intramolecular hydrogen-deuterium isotope effects: partitioning of reaction intermediates," J. Am. Chem. Soc. 1990, 112, 8126-8134, DOI: 10.1021/ja00178a042.
  85. Ghosez, L.; Montaigne, R.; Roussel, A.; Vanlierde, H.; Mollet, P. "Cycloadditions of Dichloroketene to Olefins and Dienes," Tetrahedron Lett. 1971, 27, 615-633, DOI: 10.1016/S0040-4020(01)90730-6.
  86. Machiguchi, T.; Hasegawa, T.; Ishiwata, A.; Terashima, S.; Yamabe, S.; Minato, T. "Ketene Recognizes 1,3-Dienes in Their s-Cis Forms through [4 + 2] (Diels-Alder) and [2 + 2] (Staudinger) Reactions. An Innovation of Ketene Chemistry," J. Am. Chem. Soc. 1999, 121, 4771-4786, DOI: 10.1021/ja990072u.
  87. Ussing, B. R.; Hang, C.; Singleton, D. A. "Dynamic Effects on the Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene," J. Am. Chem. Soc. 2006, 128, 7594-7607, DOI: 10.1021/ja0606024.
  88. Gonzalez-James, O. M.; Kwan, E. E.; Singleton, D. A. "Entropic Intermediates and Hidden Rate-Limiting Steps in Seemingly Concerted Cycloadditions. Observation, Prediction, and Origin of an Isotope Effect on Recrossing," J. Am. Chem. Soc. 2011, 134, 1914-1917, DOI: 10.1021/ja208779k
  89. Thomas, J. B.; Waas, J. R.; Harmata, M.; Singleton, D. A. "Control Elements in Dynamically Determined Selectivity on a Bifurcating Surface," J. Am. Chem. Soc. 2008, 130, 14544-14555, DOI: 10.1021/ja802577v.
  90. Wang, Z.; Hirschi, J. S.; Singleton, D. A. "Recrossing and Dynamic Matching Effects on Selectivity in a Diels-Alder Reaction," Angew. Chem. Int. Ed. 2009, 48, 9156-9159, DOI: 10.1002/anie.200903293.
  91. Goldman, L. M.; Glowacki, D. R.; Carpenter, B. K. "Nonstatistical Dynamics in Unlikely Places: [1,5] Hydrogen Migration in Chemically Activated Cyclopentadiene," J. Am. Chem. Soc. 2011, 133, 5312-5318, DOI: 10.1021/ja1095717.
  92. Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi-Ölçüm, N.; Houk, K. N. "Bifurcations on Potential Energy Surfaces of Organic Reactions," Angew. Chem. Int. Ed. 2008, 47, 7592-7601, DOI: 10.1002/anie.200800918
  93. Hong, Y. J.; Tantillo, D. J. "A potential energy surface bifurcation in terpene biosynthesis," Nature Chem. 2009, 1, 384-389 DOI: 10.1038/nchem.287.
  94. Siebert, M. R.; Zhang, J.; Addepalli, S. V.; Tantillo, D. J.; Hase, W. L. "The Need for Enzymatic Steering in Abietic Acid Biosynthesis: Gas-Phase Chemical Dynamics Simulations of Carbocation Rearrangements on a Bifurcating Potential Energy Surface," J. Am. Chem. Soc. 2011, 133, 8335-8343, DOI: 10.1021/ja201730y.
  95. Siebert, M. R.; Manikandan, P.; Sun, R.; Tantillo, D. J.; Hase, W. L. "Gas-Phase Chemical Dynamics Simulations on the Bifurcating Pathway of the Pimaradienyl Cation Rearrangement: Role of Enzymatic Steering in Abietic Acid Biosynthesis," J. Chem. Theor. Comput. 2012, 8, 1212-1222, DOI: 10.1021/ct300037p.
  96. Bogle, X. S.; Singleton, D. A. "Dynamic Origin of the Stereoselectivity of a Nucleophilic Substitution Reaction," Org. Lett. 2012, 14, 2528-2531, DOI: 10.1021/ol300817a.
  97. Itoh, S.; Yoshimura, N.; Sato, M.; Yamataka, H. "Computational Study on the Reaction Pathway of &alpha;-Bromoacetophenones with Hydroxide Ion: Possible Path Bifurcation in the Addition/Substitution Mechanism," J. Org. Chem. 2011, 76, 8294-8299, DOI: 10.1021/jo201485y.
  98. Ammal, S. C.; Yamataka, H.; Aida, M.; Dupuis, M. "Dynamics-Driven Reaction Pathway in an Intramolecular Rearrangement," Science 2003, 299, 1555-1557, DOI: 10.1126/science.1079491.
  99. van Zee, R. D.; Foltz, M. F.; Moore, C. B. "Evidence for a second molecular channel in the fragmentation of formaldehyde," J. Chem. Phys 1993, 99, 1664-1673, DOI: 10.1063/1.465335.
  100. Townsend, D.; Lahankar, S. A.; Lee, S. K.; Chambreau, S. D.; Suits, A. G.; Zhang, X.; Rheinecker, J.; Harding, L. B.; Bowman, J. M. "The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition," Science 2004, 306, 1158-1161, DOI: 10.1126/science.1104386.
  101. Zhang, X.; Zou, S.; Harding, L. B.; Bowman, J. M. "A Global ab Initio Potential Energy Surface for Formaldehyde," J. Phys. Chem. A 2004, 108, 8980-8986, DOI: 10.1021/jp048339l.
  102. Suits, A. G. "Roaming Atoms and Radicals: A New Mechanism in Molecular Dissociation," Acc. Chem. Res. 2008, 41, 873-881, DOI: 10.1021/ar8000734.
  103. Herath, N.; Suits, A. G. "Roaming Radical Reactions," J. Phys. Chem. Lett. 2011, 2, 642-647, DOI: 10.1021/jz101731q
  104. Harding, L. B.; Klippenstein, S. J.; Jasper, A. W. "Ab initio methods for reactive potential surfaces," Phys. Chem. Chem. Phys. 2007, 9, 4055-4070, DOI: 10.1039/B705390H.
  105. Houston, P. L.; Kable, S. H. "Photodissociation of acetaldehyde as a second example of the roaming mechanism," Proc. Nat. Acad. Sci. USA 2006, 103, 16079-16082, DOI: 10.1073/pnas.0604441103.
  106. Heazlewood, B. R.; Jordan, M. J. T.; Kable, S. H.; Selby, T. M.; Osborn, D. L.; Shepler, B. C.; Braams, B. J.; Bowman, J. M. "Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation," Proc. Nat. Acad. Sci. USA 2008, 105, 12719-12724, DOI: 10.1073/pnas.0802769105.
  107. Shepler, B. C.; Braams, B. J.; Bowman, J. M. ""Roaming" Dynamics in CH3CHO Photodissociation Revealed on a Global Potential Energy Surface," J. Phys. Chem. A 2008, 112, 9344-9351, DOI: 10.1021/jp802331t.
  108. Kamarchik, E.; Koziol, L.; Reisler, H.; Bowman, J. M.; Krylov, A. I. "Roaming Pathway Leading to Unexpected Water + Vinyl Products in C2H4OH Dissociation," J. Phys. Chem. Lett. 2010, 1, 3058-3065, DOI: 10.1021/jz1011884.
  109. Ratliff, B. J.; Alligood, B. W.; Butler, L. J.; Lee, S.-H.; Lin, J. J.-M. "Product Branching from the CH2CH2OH Radical Intermediate of the OH + Ethene Reaction," J. Phys. Chem. A 2011, 115, 9097-9110, DOI: 10.1021/jp203127k.
  110. Hause, M. L.; Herath, N.; Zhu, R.; Lin, M. C.; Suits, A. G. "Roaming-mediated Isomerization in the Photodissociation of Nitrobenzene," Nat. Chem. 2011, 3, 932-937, DOI: 10.1038/nchem.1194.
  111. Mikosch, J.; Trippel, S.; Eichhorn, C.; Otto, R.; Lourderaj, U.; Zhang, J. X.; Hase, W. L.; Weidemüller, M.; Wester, R. "Imaging Nucleophilic Substitution Dynamics," Science 2008, 319, 183-186, DOI: 10.1126/science.1150238.
  112. Oyola, Y.; Singleton, D. A. "Dynamics and the Failure of Transition State Theory in Alkene Hydroboration," J. Am. Chem. Soc. 2009, 131, 3130-3131, DOI: 10.1021/ja807666d.
  113. Glowacki, D. R.; Liang, C. H.; Marsden, S. P.; Harvey, J. N.; Pilling, M. J. "Alkene Hydroboration: Hot Intermediates That React While They Are Cooling," J. Am. Chem. Soc. 2010, 132, 13621-13623, DOI: 10.1021/ja105100f.
  114. Litovitz, A. E.; Keresztes, I.; Carpenter, B. K. "Evidence for Nonstatistical Dynamics in the Wolff Rearrangement of a Carbene," J. Am. Chem. Soc. 2008, 130, 12085-12094, DOI: 10.1021/ja803230a.