About the Book



  • » Under Construction

Chapter 1 Citations

  1. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models; John Wiley & Sons: New York, 2002.
  2. Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons: Chichester, England, 1999.
  3. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover: Mineola, N.Y., 1996.
  4. Dirac, P. A. M. "The Quantum Theory of the Electron," Proc. Roy. Soc. London. Ser. A 1928, 117, 610-624, DOI: 10.1098/rspa.1928.0023.
  5. Born, M.; Oppenheimer, R. "Zur Quantentheorie der Molekeln," Ann. Phys. 1927, 84, 457-484, DOI:10.1002/andp.19273892002
  6. Hartree, D. R. "The wave mechanics of an atom with a non-coulomb central field. I. Theory and methods," Proc. Cambridge Philos. Soc. 1928, 24, 89-110, DOI: 10.1017/S0305004100011919
  7. Fock, V. "Näherungsmethode zur Lösung des quantenmechanischen Mehrkärperproblems," Z. Phys. 1930, 61, 126-148, DOI: 10.1007/BF01340294.
  8. Fock, V. ""Selfconsistent field mit Austausch für Natrium," Z. Phys. 1930, 62, 795-805, DOI: 10.1007/BF01330439.
  9. Pauli, W. "Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren," Z. Phys. 1925, 31, 765-783, DOI: 10.1007/BF02980631.
  10. Roothaan, C. C. J. "New Developments in Molecular Orbital Theory," Rev. Mod. Phys. 1951, 23, 69-89, DOI: 10.1103/RevModPhys.23.69.
  11. Boys, S. F. "Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System," Proc. Roy. Soc. 1950, A200, 542-554, DOI: 10.1098/rspa.1950.0036.
  12. Ditchfield, R.; Hehre, W. J.; Pople, J. A. "Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules," J. Chem. Phys. 1971, 54, 724-728, DOI: 10.1063/1.1674902.
  13. Hehre, W. J.; Ditchfield, R.; Pople, J. A. "Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules," J. Chem. Phys. 1972, 56, 2257-2261, DOI: 10.1063/1.1677527.
  14. Dunning, T. H., Jr. "Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen," J. Chem. Phys. 1989, 90, 1007-1023, DOI: 10.1063/1.456153.
  15. Woon, D. E.; Dunning, T. H., Jr. "Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon," J. Chem. Phys. 1993, 98, 1358-1371, DOI: 10.1063/1.464303.
  16. Woon, D. E.; Dunning, T. H., Jr. "Gaussian Basis Sets for Use in Correlated Molecular Calculations. V. Core-Valence Basis Sets for Boron Through Neon," J. Chem. Phys. 1995, 103, 4572-4585, DOI: 10.1063/1.470645.
  17. Jensen, F. "Polarization consistent basis sets: Principles," J. Chem. Phys 2001, 115, 9113-9125, DOI: 10.1063/1.1413524.
  18. Jensen, F. "Polarization consistent basis sets. II. Estimating the Kohn--Sham basis set limit," J. Chem. Phys 2002, 116, 7372-7379, DOI: 10.1063/1.1465405.
  19. Weigend, F.; Ahlrichs, R. "Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy," Phys. Chem. Chem. Phys. 2005, 7, 3297-3305, DOI: 10.1039/B508541A.
  20. Hill, J. G. "Gaussian basis sets for molecular applications," Int. J. Quant. Chem. 2013, 113, 21-34, DOI: 10.1002/qua.24355.
  21. Jensen, F. "Atomic orbital basis sets," WIREs: Comput. Mol. Sci. 2012, DOI: 10.1002/wcms.1123.
  22. Molecular Science Computing Facility, E.M.S.L. "EMSL Gaussian Basis Set Order Form," 2005, URL: https://bse.pnl.gov/bse/portal.
  23. Boys, S. F.; Bernardi, F. "The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors," Mol. Phys. 1970, 19, 553-566, DOI: 10.1080/00268977000101561.
  24. Asturiol, D.; Duran, M.; Salvador, P. "Intramolecular basis set superposition error effects on the planarity of benzene and other aromatic molecules: A solution to the problem," J. Chem. Phys. 2008, 128, 144108, DOI: 10.1063/1.2902974.
  25. Jensen, F. "An Atomic Counterpoise Method for Estimating Inter- and Intramolecular Basis Set Superposition Errors," J. Chem. Theory Comput. 2010, 6, 100-106, DOI: 10.1021/ct900436f.
  26. Kruse, H.; Grimme, S. "A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems," J. Chem. Phys 2012, 136, 154101-154116, DOI: 10.1063/1.3700154.
  27. Kruse, H.; Goerigk, L.; Grimme, S. "Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem," J. Org. Chem. 2012, 77, 10824-10834, DOI: 10.1021/jo302156p.
  28. Sherrill, C. D.; Schaefer, H. F., III. "The Configuration Interaction Method: Advances in Highly Correlated Approaches," Adv. Quantum Chem. 1999, 34, 143-269, DOI: 10.1016/S0065-3276(08)60532-8
  29. Brillouin, L. "Les Champs Self-consistents de Hartree et de Fock," Actualities Sci. Ind 1934, 71, 159.
  30. Langhoff, S. R.; Davidson, E. R. "Configuration Interaction Calculations on the Nitrogen Molecule," Int. J. Quantum Chem. 1974, 8, 61-72, DOI: 10.1002/qua.560080106.
  31. Møller, C.; Plesset, M. S. "Note on an Approximation Treatment for Many-Electron Systems," Phys. Rev. 1934, 48, 618-622, DOI: 10.1103/PhysRev.46.618
  32. Vahtras, O.; Almlof, J.; Feyereisen, M. W. "Integral approximations for LCAO-SCF calculations," Chem. Phys. Lett. 1993, 213, 514-518, DOI: 10.1016/0009-261489151-7.
  33. Bernholdt, D. E.; Harrison, R. J. "Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers," Chem. Phys. Lett. 1996, 250, 477-484, DOI: 10.1016/0009-261400054-1.
  34. Grimme, S. "Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies," J. Chem. Phys 2003, 118, 9095-9102, DOI: 10.1063/1.1569242.
  35. Schwabe, T.; Grimme, S. "Theoretical Thermodynamics for Large Molecules: Walking the Thin Line between Accuracy and Computational Cost," Acc. Chem. Res. 2008, 41, 569-579, DOI: 10.1021/ar700208h
  36. Grimme, S.; Goerigk, L.; Fink, R. F. "Spin-component-scaled electron correlation methods," WIREs Comput. Mol. Sci. 2012, 2, 886-906, DOI: 10.1002/wcms.1110.
  37. Cizek, J. "On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods," J. Chem. Phys. 1966, 45, 4256-4266, DOI: 10.1063/1.1727484.
  38. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. "A fifth-order Perturbation Comparison of Electron Correlation Theories," Chem. Phys. Lett. 1989, 157, 479-483, DOI: 10.1016/S0009-261487395-6.
  39. Řezáč, J.; Hobza, P. "Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit?," J. Chem. Theor. Comput. 2013, 9, 2151-2155, DOI: 10.1021/ct400057w.
  40. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. "Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies," J. Chem. Phys. 1987, 87, 5968-5975, DOI: 10.1063/1.453520.
  41. Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W. "Size-Consistent Brueckner Theory Limited to Double Substitutions," Chem. Phys. Lett. 1989, 164, 185-192, DOI: 10.1016/0009-261485013-4.
  42. Shepard, R. "The Multiconfiguration Self-Consistent Field Method," Adv. Chem. Phys. 1987, 69, 63-200, DOI: 10.1002/9780470142943.ch2.
  43. Roos, B. "The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations," Adv. Chem. Phys. 1987, 69, 399-445, DOI: 10.1002/9780470142943.ch7
  44. Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. "Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function," J. Chem. Phys. 1992, 96, 1218-1226, DOI: 10.1063/1.462209.
  45. Lyakh, D. I.; Musiał, M.; Lotrich, V. F.; Bartlett, R. J. "Multireference Nature of Chemistry: The Coupled-Cluster View," Chem. Rev. 2011, 112, 182-243, DOI: 10.1021/cr2001417.
  46. Mahapatra, U. S.; Datta, B.; Mukherjee, D. "A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications," J. Chem. Phys 1999, 110, 6171-6188, DOI: 10.1063/1.478523.
  47. Chattopadhyay, S.; Mahapatra, U. S.; Mukherjee, D. "Property calculations using perturbed orbitals via state-specific multireference coupled-cluster and perturbation theories," J. Chem. Phys 1999, 111, 3820-3831, DOI: 10.1063/1.479685.
  48. Evangelista, F. A.; Allen, W. D.; Schaefer III, H. F. "Coupling term derivation and general implementation of state-specific multireference coupled cluster theories," J. Chem. Phys 2007, 127, 024102-024117, DOI: 10.1063/1.2743014.
  49. Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. "Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies," J. Chem. Phys. 1989, 90, 5622-5629, DOI: 10.1063/1.456415.
  50. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. "Gaussian-2 Theory for Molecular Energies of First- and Second-Row Compounds," J. Chem. Phys. 1991, 94, 7221-7230, DOI: 10.1063/1.460205.
  51. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. "Gaussian-3 (G Theory for Molecules Containing First and Second-Row Atoms," J. Chem. Phys. 1998, 109, 7764-7776, DOI: 10.1063/1.477422.
  52. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. "Gaussian-4 theory," J. Chem. Phys 2007, 126, 084108, DOI: 10.1063/1.2436888.
  53. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. "Gaussian-4 theory using reduced order perturbation theory," J. Chem. Phys 2007, 127, 124105, DOI: 10.1063/1.2770701.
  54. J. Chem. Phys. 1999, 110, 2822-2827, DOI: 10.1063/1.477924.
  55. Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. "A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method," J. Chem. Phys. 2000, 112, 6532-6542, DOI: 10.1063/1.481224.
  56. Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F. "High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview," J. Chem. Phys 2008, 128, 114111-114115, DOI: 10.1063/1.2835612.
  57. Tajti, A.; Szalay, P. G.; Csaszar, A. G.; Kallay, M.; Gauss, J.; Valeev, E. F.; Flowers, B. A.; Vazquez, J.; Stanton, J. F. "HEAT: High accuracy extrapolated ab initio thermochemistry," J. Chem. Phys 2004, 121, 11599-11613, DOI: 10.1063/1.1811608.
  58. Martin, J. M. L.; de Oliveira, G. "Towards Standard Methods for Benchmark Quality ab Initio Thermochemistry - W1 and W2 Theory," J. Chem. Phys. 1999, 111, 1843-1856, DOI: 10.1063/1.479454.
  59. Karton, A.; Rabinovich, E.; Martin, J. M. L.; Ruscic, B. "W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions," J. Chem. Phys 2006, 125, 144108-144117, DOI: 10.1063/1.2348881.
  60. Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kallay, M.; Gauss, J. "W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range," J. Chem. Phys 2004, 120, 4129-4141, DOI: 10.1063/1.1638736.
  61. Dixon, D. A.; Feller, D.; Peterson, K. A. In Annual Reports in Computational Chemistry; Wheeler, R. A., Ed.; Elsevier: 2012; Vol. 8, p 1-28, DOI: 10.1016/B978-0-444-59440-2.00001-6.
  62. Martin, J. M. L. "Computational Thermochemistry: A Brief Overview of Quantum Mechanical Approaches," Ann. Rep. Comput. Chem. 2005, 1, 31-43.
  63. Császár, A. G.; Allen, W. D.; Schaefer, H. F., III "In Pursuit of the ab Initio Limit for Conformational Energy Prototypes," J. Chem. Phys. 1998, 108, 9751-9764, DOI: 10.1063/1.476449.
  64. Hohenberg, P.; Kohn, W. "Inhomogeneous Electron Gas," Phys. Rev. 1964, 136, B864-B871, DOI: 10.1103/PhysRev.136.B864.
  65. Kohn, W.; Sham, L. J. "Self-Consistent Equations Including Exchange and Correlation Effects," Phys. Rev. 1965, 140, A1133-A1138, DOI: 10.1103/PhysRev.140.A1133.
  66. Perdew, J. P.; Schmidt, K. In Density Functional Theory and its Application to Materials; Doren, V. V., Alsenoy, C. V., Geerlings, P., Eds.; AIP-Press: Melville, 2001, p 1-20.
  67. Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. "Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits," J. Chem. Phys. 2005, 123, 062201, DOI: 10.1063/1.1904565.
  68. Vosko, S. H.; Wilk, L.; Nusair, M. "Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: a Critical Analysis," Can. J. Phys. 1980, 58, 1200-1211, DOI: 10.1139/p80-159
  69. Koch, W.; Holthaisen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
  70. Becke, A. D. "Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior," Phys. Rev. A 1988, 38, 3098-3100, DOI: 10.1103/PhysRevA.38.3098.
  71. Lee, C.; Yang, W.; Parr, R. G. "Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density," Phys. Rev. B 1988, 37, 785-789, DOI: 10.1103/PhysRevB.37.785.
  72. Perdew, J. P.; Wang, Y. "Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy," Phys. Rev. B 1992, 45, 13244-13249, DOI: 10.1103/PhysRevB.45.13244.
  73. Perdew, J. P.; Burke, K.; Ernzerhof, M. "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 1996, 77, 3865-3868 (errata 1997, 78 , 139, DOI: 10.1103/PhysRevLett.77.3865.
  74. Adamo, C.; Barone, V. "Toward reliable density functional methods without adjustable parameters: The PBE0 model," J. Chem. Phys. 1999, 110, 6158-6170, DOI: 10.1063/1.478522.
  75. Becke, A. D. "Density-Functional Thermochemistry. III. The Role of Exact Exchange," J. Chem. Phys. 1993, 98, 5648-5652, DOI: 10.1063/1.464913.
  76. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields," J. Phys. Chem. 1994, 98, 11623-11627, DOI: 10.1021/j100096a001.
  77. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. "Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids," Phys. Rev. Lett. 2003, 91, 146401, DOI: 10.1103/PhysRevLett.91.146401.
  78. Zhao, Y.; Truhlar, D. G. "Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions," J. Phys. Chem. A 2004, 108, 6908-6918, DOI: 10.1021/jp048147q.
  79. Zhao, Y.; Truhlar, D. G. "Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions," J. Phys. Chem. A 2005, 109, 5656-5667, DOI: 10.1021/jp050536c.
  80. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. "Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions," J. Chem. Theory Comput. 2006, 2, 364-382, DOI: 10.1021/ct0502763.
  81. Zhao, Y.; Truhlar, D. "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals," Theor. Chem. Acc. 2008, 120, 215-241, DOI: 10.1007/s00214-007-0310-x.
  82. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. "A long-range correction scheme for generalized-gradient-approximation exchange functionals," J. Chem. Phys 2001, 115, 3540-3544, DOI: 10.1063/1.1383587
  83. Becke, A. D. "Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals," J. Chem. Phys 1997, 107, 8554-8560, DOI: 10.1063/1.475007.
  84. Chai, J.-D.; Head-Gordon, M. "Systematic optimization of long-range corrected hybrid density functionals," J. Chem. Phys 2008, 128, 084106-084115, DOI: 10.1063/1.2834918.
  85. Grimme, S. "Semiempirical hybrid density functional with perturbative second-order correlation," J. Chem. Phys 2006, 124, 034108-034116, DOI: 10.1063/1.2148954.
  86. Schwabe, T.; Grimme, S. "Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects," Phys. Chem. Chem. Phys. 2006, 8, 4398-4401, DOI: 10.1039/B608478H.
  87. Tarnopolsky, A.; Karton, A.; Sertchook, R.; Vuzman, D.; Martin, J. M. L. "Double-Hybrid Functionals for Thermochemical Kinetics," J. Phys. Chem. A 2007, 112, 3-8, DOI: 10.1021/jp710179r.
  88. Grimme, S. "Density functional theory with London dispersion corrections," WIREs Comput. Mol. Sci. 2011, 1, 211-228, DOI: 10.1002/wcms.30.
  89. Grimme, S. "Accurate description of van der Waals complexes by density functional theory including empirical corrections," J. Comput. Chem. 2004, 25, 1463-1473, DOI: 10.1002/jcc.20078.
  90. Grimme, S. "Semiempirical GGA-type density functional constructed with a long-range dispersion correction," J. Comput. Chem. 2006, 27, 1787-1799, DOI: 10.1002/jcc.20495.
  91. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. "A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu," J. Chem. Phys 2010, 132, 154104-154119, DOI: 10.1063/1.3382344.
  92. Chai, J.-D.; Head-Gordon, M. "Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections," Phys. Chem. Chem. Phys. 2008, 10, 6615-6620, DOI: 10.1039/B810189B.
  93. Grimme, S.; Ehrlich, S.; Goerigk, L. "Effect of the damping function in dispersion corrected density functional theory," J. Comput. Chem. 2011, 32, 1456-1465, DOI: 10.1002/jcc.21759.
  94. Becke, A. D.; Johnson, E. R. "Exchange-hole dipole moment and the dispersion interaction," J. Chem. Phys 2005, 122, 154104-154105, DOI: 10.1063/1.1884601.
  95. Schwabe, T.; Grimme, S. "Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability," Phys. Chem. Chem. Phys. 2007, 9, 3397-3406, DOI: 10.1039/B704725H.
  96. Hujo, W.; Grimme, S. "Performance of Non-Local and Atom-Pairwise Dispersion Corrections to DFT for Structural Parameters of Molecules with Noncovalent Interactions," J. Chem. Theor. Comput. 2013, 9, 308-315, DOI: 10.1021/ct300813c.
  97. Kozuch, S.; Gruzman, D.; Martin, J. M. L. "DSD-BLYP: A General Purpose Double Hybrid Density Functional Including Spin Component Scaling and Dispersion Correction," J. Phys. Chem. C 2010, 114, 20801-20808, DOI: 10.1021/jp1070852.
  98. Kozuch, S.; Martin, J. M. L. "DSD-PBEP86: in search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections," Phys. Chem. Chem. Phys. 2011, 13, 20104-20107, DOI: 10.1039/C1CP22592H.
  99. Swart, M. "Popularity poll density functionals 2012 (DFT2012)," 2012, URL: http://www.marcelswart.eu/.
  100. Bickelhaupt, F. M.; Baerends, E. J.; Nibbering, N. M. M. "The effect of microsolvation on E2 and SN2 reactions: theoretical study of the model system F- + C2H5F + nHF," Chemistry Eur. J. 1996, 2, 196-207, DOI: 10.1002/chem.19960020212
  101. Okuno, Y. "Theoretical Examination of Solvent Reorganization and Nonequilibrium Solvation Effects in Microhydrated Reactions," J. Am. Chem. Soc. 2000, 122, 2925-2933, DOI: 10.1021/ja9940221.
  102. Raugei, S.; Cardini, G.; Schettino, V. "Microsolvation Effect on Chemical Reactivity: The Case of the Cl- + CH3Br SNReaction," J. Chem. Phys. 2001, 114, 4089-4098, DOI: 10.1063/1.1348023.
  103. Re, S.; Morokuma, K. "ONIOM Study of Chemical Reaction in Microslvation Clusters: (H2O)nCH3Cl + OH-(H2O)m (n+m=1 and 2)," J. Phys. Chem. A 2001, 105, 7185-7197, DOI: 10.1021/jp004623a.
  104. Takashima, K.; Riveros, J. M. "Gas-Phase Solvated Negative Ions," Mass Spectrom. Rev. 1998, 17, 409-430, DOI: 10.1002/(SICI)1098-27879917:6<409::AID-MAS2>3.0.CO;2-J.
  105. Laerdahl, J. K. "Gas Phase Nucleophilic Substitution," Int. J. Mass Spectrom. 2002, 214, 277-314, DOI: 10.1016/S1387-3806(000575-9.
  106. Roux, B.; Simonson, T. "Implicit Solvent Models," Biophys. Chem. 1999, 78, 1-20, DOI: 10.1016/S0301-462200226-9.
  107. Miertus, S.; Scrocco, E.; Tomasi, J. "Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab Initio Molecular Potentials for the Prevision of Solvent Effects," Chem. Phys. 1981, 55, 117-129, DOI: 10.1016/0301-010485090-2.
  108. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. "Ab Initio Study of Solvated Molecules: a New Implementation of the Polarizable Continuum Model," Chem. Phys. Lett. 1996, 255, 327-335, DOI: 10.1016/0009-261400349-1.
  109. Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. "Parameterization of Charge Model 3 for AM1, PM3, BLYP, and B3LYP," J. Comput. Chem. 2003, 24, 1291-1304, DOI: 10.1002/jcc.10244.
  110. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. "SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters," J. Chem. Theory Comput. 2005, 1, 1133-1152, DOI: 10.1021/ct050164b.
  111. Li, J.; Zhu, T.; Hawkins, G. D.; Winget, P.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. "Extension of the Platform of Applicability of the SM5.42R Universal Solvation Model," Theor. Chem. Acc. 1999, 103, 9 - 63, DOI: 10.1007/s002140050513.
  112. Cramer, C. J.; Truhlar, D. G. In Solvent Effects and Chemical Reactivity; Tapia, O., Bertran, J., Eds.; Kluwer: Dordrecht, 1996, p 1-80.
  113. Tomasi, J.; Persico, M. "Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent," Chem. Rev. 1994, 94, 2027-2094, DOI: 10.1021/cr00031a013.
  114. Cancè, E.; Mennucci, B.; Tomasi, J. "A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics," J. Chem. Phys. 1997, 107, 3032-3041, DOI: 10.1063/1.474659 .
  115. Barone, V.; Cossi, M.; Tomasi, J. "Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model," J. Comput. Chem. 1998, 19, 404-417, DOI: 10.1002/(SICI)1096-987X998019:4<404::AID-JCC3>3.0.CO;2-W.
  116. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. "Polarizable Dielectric Model of Solvation with Inclusion of Charge Penetration Effects," J. Chem. Phys. 2001, 115, 5691-5701, DOI: 10.1063/1.1354187.
  117. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. "New Developments in the Polarizable Continuum Model for Quantum Mechanical and Classical Calculations on Molecules in Solution," J. Chem. Phys. 2002, 117, 43-54, DOI: 10.1063/1.1480445.
  118. Orozco, M.; Luque, F. J. "Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems," Chem. Rev. 2000, 100, 4187-4226, DOI: 10.1021/cr990052a.
  119. Curutchet, C.; Orozco, M.; Luque, J. F. "Solvation in Octanol: Parametrization of the Continuum MST Model," J. Comput. Chem. 2001, 22, 1180-1193, DOI: 10.1002/jcc.1076.
  120. Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J. "Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations," J. Phys. Chem. 1996, 100, 16098-16104, DOI: 10.1021/jp960488j.
  121. York, D. M.; Karplus, M. "A Smooth Solvation Potential Based on the Conductor-Like Screening Model," J. Phys. Chem. A 1999, 103, 11060-11079, DOI: 10.1021/jp992097l.
  122. Mennucci, B. "Polarizable continuum model," WIREs Comput. Mol. Sci. 2012, 2, 386-404, DOI: 10.1002/wcms.1086.
  123. Cramer, C. J.; Truhlar, D. G. "General Parameterized SCF Model for Free Energies of Solvation in Aqueous Solution," J. Am. Chem. Soc. 1991, 113, 8305-8311, DOI: 10.1021/ja00022a017.
  124. Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. "Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries," J. Phys. Chem. B 1998, 102, 3257-3271, DOI: 10.1021/jp973306+.
  125. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. "Generalized Born Solvation Model SM12," J. Chem. Theor. Comput. 2013, 9, 609-620, DOI: 10.1021/ct300900e.
  126. Klamt, A.; Schürmann, G. "COSMO: a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient," J. Chem. Soc., Perkin Trans. 2 1993, 799-805, DOI: <10.1039/P29930000799.
  127. Klamt, A.; Jonas, V.; Burger, T.; Lohrenz, J. C. W. "Refinement and Parametrization of COSMO-RS," J. Phys. Chem. A 1998, 102, 5074-5085, DOI: 10.1021/jp980017s.
  128. Barone, V.; Cossi, M. "Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model," J. Phys. Chem. A 1998, 102, 1995-2001, DOI: 10.1021/jp9716997.
  129. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. "Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model," J. Comput. Chem. 2003, 24, 669-681, DOI: 10.1002/jcc.10189.
  130. Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. "Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges," J. Chem. Theor. Comput. 2007, 3, 2011-2033, DOI: 10.1021/ct7001418.
  131. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. "Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants," J. Phys. Chem. A 2006, 110, 2493-2499, DOI: 10.1021/jp055336f.
  132. Warshel, A.; Levitt, M. "Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme," J. Mol. Biol. 1976, 103, 227-249, DOI: 10.1016/0022-283690311-9.
  133. Singh, U. C.; Kollman, P. A. "A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers," J. Comput. Chem. 1986, 7, 718-730, DOI: 10.1002/jcc.540070604.
  134. Field, M. J.; Bash, P. A.; Karplus, M. "A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations," J. Comput. Chem. 1990, 11, 700-733, DOI: 10.1002/jcc.540110605.
  135. Allinger, N. L. "Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms," J. Am. Chem. Soc. 1977, 99, 8127-8134, DOI: 10.1021/ja00467a001.
  136. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. "A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules," J. Am. Chem. Soc. 1995, 117, 5179-5197, DOI: 10.1021/ja00124a002.
  137. Damm, W.; Frontera, A.; Tirado-Rives, J.; Jorgensen, W. L. "OPLS all-atom force field for carbohydrates," J. Comput. Chem. 1997, 18, 1955-1970, DOI: 10.1002/(SICI)1096-987X997118:16<1955::AID-JCC1>3.0.CO;2-L
  138. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. "CHARMM: A program for macromolecular energy, minimization, and dynamics calculations," J. Comput. Chem. 1983, 4, 187-217, DOI: 10.1002/jcc.540040211.
  139. Gao, J.; Truhlar, D. G. "Quantum Mechanical Methods for Enzyme Kinetics," Ann. Rev. Phys. Chem. 2002, 53, 467-505, DOI: 10.1146/annurev.physchem.53.091301.150114
  140. Vreven, T.; Morokuma, K. "Hybrid Methods: ONIOM(QM:MM) and QM/MM," Ann. Rep. Comput. Chem. 2006, 2, 35-51, DOI: 10.1016/S1574-1400(002003-2.
  141. Lin, H.; Truhlar, D. "QM/MM: what have we learned, where are we, and where do we go from here?," Theor. Chem. Acc. 2007, 117, 185-199, DOI: 10.1007/s00214-006-0143-z.
  142. Senn, H. M.; Thiel, W. "QM/MM Methods for Biomolecular Systems," Angew. Che, Int. Ed. 2009, 48, 1198-1229, DOI: 10.1002/anie.200802019.
  143. Bakowies, D.; Thiel, W. "Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches," J. Phys. Chem. 1996, 100, 10580-10594, DOI: 10.1021/jp9536514.
  144. Théry, V.; Rinaldi, D.; Rivail, J.-L.; Maigret, B.; Ferenczy, G. G. "Quantum mechanical computations on very large molecular systems: The local self-consistent field method," J. Comput. Chem. 1994, 15, 269-282, DOI: 10.1002/jcc.540150303
  145. Assfeld, X.; Rivail, J.-L. "Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method," Chem. Phys. Lett. 1996, 263, 100-106, DOI: 10.1016/S0009-261401165-7.
  146. Gao, J.; Amara, P.; Alhambra, C.; Field, M. J. "A Generalized Hybrid Orbital (GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM Calculations," J. Phys. Chem. A 1998, 102, 4714-4721, DOI: 10.1021/jp9809890.
  147. Dapprich, S.; Komiromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. "A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives," J. Mol. Struct. THEOCHEM 1999, 461-462, 1-21, DOI: 10.1016/S0166-128000475-8.
  148. Waszkowycz, B.; Hillier, I. H.; Gensmantel, N.; Payling, D. W. "Combined quantum mechanical-molecular mechanical study of catalysis by the enzyme phospholipase A2: an investigation of the potential energy surface for amide hydrolysis," J. Chem. Soc., Perkin Trans 2 1991, 2025-2032, DOI: 10.1039/P29910002025.
  149. Chung, L. W.; Hirao, H.; Li, X.; Morokuma, K. "The ONIOM method: its foundation and applications to metalloenzymes and photobiology," WIREs Comput. Mol. Sci. 2012, 2, 327-350, DOI: 10.1002/wcms.85.
  150. Vreven, T.; Byun, K. S.; Komaromi, I.; Dapprich, S.; Montgomery, J. A.; Morokuma, K.; Frisch, M. J. "Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM," J. Chem. Theory Comput. 2006, 2, 815-826, DOI: 10.1021/ct050289g.
  151. Gonzalez, C.; Schlegel, H. B. "Reaction Path Following in Mass-Weighted Internal Coordinates," J. Phys. Chem. 1990, 94, 5523-5527, DOI: 10.1021/j100377a021.
  152. Stanton, R. E.; McIver, J. W. "Group theoretical selection rules for the transition states of chemical reactions," J. Am. Chem. Soc. 1975, 97, 3632-3646, DOI: 10.1021/ja00846a012.
  153. Schlegel, H. B. "Optimization of equilibrium geometries and transition structures," J. Comput. Chem. 1982, 3, 214-218, DOI: 10.1002/jcc.540030212.
  154. Schlegel, H. B. "Exploring Potential Energy Surfaces for Chemical Reactions: An Overview of Some Practical Methods," J. Comput. Chem. 2003, 24, 1514-1527, DOI: 10.1002/jcc.10231 .
  155. Peng, C.; Schlegel, H. B. "Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States," Isr. J. Chem. 1993, 33, 449-454, DOI: 10.1002/ijch.199300051.
  156. Bachrach, S. M. "Population Analysis and Electron Densities from Quantum Mechanics," in Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH Publishers: New York, 1994; Vol. 5, p 171-228, DOI: 10.1002/9780470125823.ch3
  157. Mulliken, R. S. "Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I," J. Chem. Phys. 1955, 23, 1833-1840, DOI: 10.1063/1.1740588.
  158. Cusachs, L. C.; Politzer, P. "On the Problem of Defining the Charge on an Atom in a Molecule," Chem. Phys. Lett. 1968, 1, 529-531, DOI: 10.1016/0009-261480010-7.
  159. L�wdin, P.-O. "On the Orthogonality Problem," Adv. Quantum Chem. 1970, 5, 185-199, DOI: 10.1016/S0065-3276(060339-1.
  160. Reed, A. E.; Weinstock, R. B.; Weinhold, F. "Natural Population Analysis," J. Chem. Phys. 1985, 83, 735-746, DOI: 10.1063/1.449486.
  161. Weinhold, F. "Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives," J. Comput. Chem. 2012, 33, 2363-2379, DOI: 10.1002/jcc.23060.
  162. Glendening, E. D.; Landis, C. R.; Weinhold, F. "Natural bond orbital methods," Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 1-42, DOI: 10.1002/wcms.51.
  163. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990.
  164. Bader, R.; Matta, C. "Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems," Found. Chem. 2012, 1-24, DOI: 10.1007/s10698-012-9153-1.