About the Book



  • » Under Construction

Chapter 5 Citations

  1. (1) Reactive Intermediate Chemistry; Moss, R. A.; Platz, M. S.; Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004.
  2. Salem, L.; Rowland, C. "The Electronic Properties of Diradicals," Angew. Chem. Int. Ed. Engl. 1972, 11, 92-111, DOI: 10.1002/anie.197200921.
  3. Giese, B. Radicals in Organic Synthesis : Formation of Carbon-Carbon Bonds; Pergamon Press: Oxford, 1986.
  4. Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. "Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals," J. Phys. Chem. A 2001, 105, 6750-6756, DOI: 10.1021/jp010442c.
  5. Radicals in Organic Synthesis; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001.
  6. Newcomb, M. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p 122-163.
  7. Diradicals; Borden, W. T., Ed.; John Wiley & Sons: New York, 1982.
  8. Rajca, A. "Organic Diradicals and Polyradicals: From Spin Coupling to Magnetism?," Chem. Rev. 1994, 94, 871-893, DOI: 10.1021/cr00028a002.
  9. Berson, J. A. "Diradicals: Conceptual, Inferential, and Direct Methods for the Study of Chemical Reactions," Science 1994, 266, 1338-1339, DOI: 10.1126/science.266.5189.1338.
  10. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 1.
  11. Advances in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press: Greenwich, CT, 1998; Vol. 2.
  12. Advances in Carbene Chemistry; Brinker, U. H., Ed.; Elsevier Science: Amsterdam, 2001; Vol. 3.
  13. Berson, J. A. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones Jr., M., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p 165-203.
  14. Jones, M., Jr.; Moss, R. A. In Reactive Intermediate Chemistry; Moss, R. A., Platz, W. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p 273-328.
  15. Tomioka, H. In Reactive Intermediate Chemistry; Moss, R. A., Platz, W. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, New Jersey, 2004, p 375-461.
  16. Lineberger, W. C.; Borden, W. T. "The synergy between qualitative theory, quantitative calculations, and direct experiments in understanding, calculating, and measuring the energy differences between the lowest singlet and triplet states of organic diradicals," Phys. Chem. Chem. Phys. 2011, 13, 11792-11813, DOI: 10.1039/C0CP02786C.
  17. Goddard, W. A., III "Theoretical Chemistry Comes Alive: Full Partner with Experiment," Science 1985, 227, 917-923, DOI: 10.1126/science.227.4689.917.
  18. Schaefer, H. F., III "Methylene: A Paradigm for Computational Quantum Chemistry," Science 1986, 231, 1100-1107, DOI: 10.1126/science.231.4742.1100.
  19. Herzberg, G.; Shoosmith, J. "Spectrum and Structure of the Free Methylene Radical," Nature 1959, 183, 1801-1802, DOI: 10.1038/1831801a0.
  20. Herzberg, G. "The Spectra and Structure of Free Methyl and Free Methylene," Proc. Roy. Soc. A 1961, 262, 291-317, DOI: 10.1098/rspa.1961.0120.
  21. Herzberg, G.; Johns, J. W. C. "The Spectrum and Structure of Singlet CH2," Proc. Roy. Soc., A 1966, 295, 107-128, DOI: 10.1098/rspa.1966.0229.
  22. Foster, J. M.; Boys, S. F. "Quantum Variational Calculations for a Range of CH2 Configurations," Rev. Mod. Phys. 1960, 32, 305-307, DOI: 10.1103/RevModPhys.32.305.
  23. Jordan, P. C. H.; Longuet-Higgins, H. C. "The Lower Electronic Levels of the Radicals CH, CH2, CH3, NH, NH2, BH, BH2, and BH3," Mol. Phys. 1962, 5, 121-138, DOI: 10.1080/00268976200100131.
  24. Bender, C. F.; Schaefer, H. F., III "New Theoretical Evidence for the Nonlinearlity of the Triplet Ground State of Methylene," J. Am. Chem. Soc. 1970, 92, 4984-4985, DOI: 10.1021/ja00719a039.
  25. Bernheim, R. A.; Bernard, H. W.; Wang, P. S.; Wood, L. S.; Skell, P. S. "Electron Paramagnetic Resonance of Triplet CH2," J. Chem. Phys. 1970, 53, 1280-1281, DOI: 10.1063/1.1674129.
  26. Wasserman, E.; Yager, W. A.; Kuck, V. J. "EPR of CH2: a Substiantially Bent and Partially Rotating Ground State Triplet," Chem. Phys. Lett. 1970, 7, 409-413, DOI: 10.1016/0009-2614(70)80320-7.
  27. Herzberg, G.; Johns, J. W. C. "On the Structure of CH2 in its Triplet Ground State," J. Chem. Phys. 1971, 54, 2276-2278, DOI: 10.1063/1.1675164.
  28. Jensen, P.; Bunker, P. R. "The Potential Surface and Stretching Frequencies of X 3B1 Methylene (CH2) Determined from Experiment Using the Morse Oscillator-Rigid Bender Internal Dynamics Hamioltonian," J. Chem. Phys. 1988, 89, 1327-1332, DOI: 10.1063/1.455184.
  29. Yamaguchi, Y.; Sherrill, C. D.; Schaefer, H. F., III "The X 3B1, a 1A1, b 1B1, and c 1A1 Electronic States of CH2," J. Phys. Chem. 1996, 100, 7911-7918, DOI: 10.1021/jp953150i.
  30. Apeloig, Y.; Pauncz, R.; Karni, M.; West, R.; Steiner, W.; Chapman, D. "Why is Methylene a Ground State Triplet while Silylene is a Ground State Singlet?," Organometallics 2003, 22, 3250-3256, DOI: 10.1021/om0302591.
  31. Woon, D. E.; Dunning, T. H., Jr. "Gaussian Basis Sets for Use in Correlated Molecular Calculations. V. Core-Valence Basis Sets for Boron Through Neon," J. Chem. Phys. 1995, 103, 4572-4585, DOI: 10.1063/1.470645.
  32. Kalemos, A.; Dunning, T. H., Jr.; Mavridis, A.; Harrison, J. F. "CH2 Revisited," Can. J. Chem. 2004, 82, 684-693, DOI: 10.1139/V04-045.
  33. Worthington, S. E.; Cramer, C. J. "Density Functional Calculations of the Influence of Substitution on Singlet-Triplet Gaps in Carbenes and Vinylidenes," J. Phys. Org. Chem. 1997, 10, 755-767, DOI: 10.1002/(SICI)1099-1395(199710)10:10<755::AID-POC935>3.0.CO;2-P.
  34. Das, D.; Whittenburg, S. L. "Performance of the Hybrid Density Functionals in the Determination of the Geometric Structure, Vibrational Frequency and Singlet-Triplet Energy Separation of CH2, CHF, CF2, CCl2 and CBr2," J. Mol. Struct. (THEOCHEM) 1999, 492, 175-186, DOI: 10.1016/S0166-1280(99)00169-4.
  35. Shavitt, I. "Geometry and Singlet-Triplet Energy Gap in Methylene. A Critical Review of Experimental and Theoretical Determinations," Tetrahedron 1985, 41, 1531-1542, DOI: 10.1016/S0040-4020(01)96393-8.
  36. Hay, P. J.; Hunt, W. J.; Goddard Iii, W. A. "Generalized valence bond wavefunctions for the low lying states of methylene," Chem. Phys. Lett. 1972, 13, 30-35, DOI: 10.1016/0009-2614(72)80035-6.
  37. Bender, C. F.; Schaefer, H. F., III; Franceschetti, D. R.; Allen, L. C. "Singlet-Triplet Energy Separation, Walsh-Mulliken Diagrams, and Singlet d-Polarization Effects in Methylene," J. Am. Chem. Soc. 1972, 94, 6888-6893, DOI: 10.1021/ja00775a004.
  38. Zittel, P. F.; Ellison, G. B.; O'Neil, S. V.; Herbst, E.; Lineberger, W. C.; Reinhardt, W. P. "Laser Photoelectron Spectrometry of CH2-. Singlet-Triplet Splitting and Electron Affinity of CH2," J. Am. Chem. Soc. 1976, 98, 3731-3732, DOI: 10.1021/ja00428a070.
  39. Harding, L. B.; Goddard, W. A., III "Ab Initio Studies on the Singlet-Triplet Splitting of Methylene (CH2)," J. Chem. Phys. 1977, 67, 1777-1779, DOI: 10.1063/1.435043.
  40. Lucchese, R. R.; Schaefer, H. F., III "Extensive Configuration Interaction Studies of the Methylene Singlet-Triplet Separation," J. Am. Chem. Soc. 1977, 99, 6765-6766, DOI: 10.1021/ja00462a054.
  41. Roos, B. O.; Siegbahn, P. M. "Methylene Singlet-Triplet Separation. An ab initio Configuration Interaction Study," J. Am. Chem. Soc. 1977, 99, 7716-7718, DOI: 10.1021/ja00465a057.
  42. Harding, L. B.; Goddard, W. A., III "Methylene: Ab Initio Vibronic Analysis and Reinterpretation of the Spectroscopic and Negative Ion Photoelectron Experiments," Chem. Phys. Lett. 1978, 55, 217-220, DOI: 10.1016/0009-2614(78)87005-5.
  43. McKellar, R. W.; Bunker, P. R.; Sears, T. J.; Evenson, K. M.; Saykally, R. J.; Langhoff, S. R. "Far Infrared Laser Magnetic Resonance of Singlet Methylene: Singlet-Triplet Perturbations, Singlet-Triplet Transitions, and the Singlet-Triplet Splitting," J. Chem. Phys. 1983, 79, 5251-5264, DOI: 10.1063/1.445713.
  44. Leopold, D. G.; Murray, K. K.; Lineberger, W. C. "Laser Photoelectron Sprectoscopy of Vibrationally Relaxed CH2-: A Reinvestigation of the Singlet-Triplet Splitting in Merthylene," J. Chem. Phys. 1984, 81, 1048-1050, DOI: 10.1063/1.447741.
  45. Schreiner, P. R.; Karney, W. L.; von Rague Schleyer, P.; Borden, W. T.; Hamilton, T. P.; Schaefer, H. F., III "Carbene Rearrangements Unsurpassed: Details of the C7H6 Potential Energy Surface Revealed," J. Org. Chem. 1996, 61, 7030-7039, DOI: 10.1021/jo960884y.
  46. Demel, O.; Pittner, J.; Carsky, P.; Hubac, I. "Multireference Brillouin-Wigner Coupled Cluster Singles and Doubles Study of the Singlet-Triplet Separation in Alkylcarbenes," J. Phys. Chem. A 2004, 108, 3125-3128, DOI: 10.1021/jp037135m.
  47. Demel, O.; Pittner, J. "Multireference Brillouin--Wigner coupled cluster method with singles, doubles, and triples: Efficient implementation and comparison with approximate approaches," J. Chem. Phys 2008, 128, 104108-104111, DOI: 10.1063/1.2832865.
  48. Oyedepo, G. A.; Wilson, A. K. "Multireference Correlation Consistent Composite Approach [MR-ccCA]: Toward Accurate Prediction of the Energetics of Excited and Transition State Chemistry," J. Phys. Chem. A 2010, 114, 8806-8816, DOI: 10.1021/jp1017949.
  49. Gronert, S.; Keeffe, J. R.; More O'Ferrall, R. A. "Stabilities of Carbenes: Independent Measures for Singlets and Triplets," J. Am. Chem. Soc. 2011, 133, 3381-3389, DOI: 10.1021/ja1071493.
  50. Matus, M. H.; Nguyen, M. T.; Dixon, D. A. "Heats of Formation and Singlet−Triplet Separations of Hydroxymethylene and 1-Hydroxyethylidene," J. Phys. Chem. A 2006, 110, 8864-8871, DOI: 10.1021/jp0568069.
  51. Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C. "Singlet-Triplet Splittings in CX2 (X = F, Cl, Br, I) Dihalocarbenes via Negative Ion Phoetoelectron Spectroscopy," J. Phys. Chem. A 1999, 103, 8213-8221, DOI: 10.1021/jp992214c.
  52. Gutsev, G. L.; Ziegler, T. "Theoretical Study on Neutral and Anionic Halocarbynes and Halocarbenes," J. Phys. Chem. 1991, 95, 7220-7228, DOI: 10.1021/j100172a024.
  53. Russo, N.; Sicilia, E.; Toscano, M. "Geometries, Singlet-triplet Separations, Dipole Moments, Ionization Potentials, and Vibrational Frequencies in Methylene (CH2) and Halocarbenes (CHF, CF2, CCl2, CBr2, and CCI2)," J. Chem. Phys. 1992, 97, 5031-5036, DOI: 10.1063/1.463857.
  54. Gobbi, A.; Frenking, G. "The Singlet-Triplet Gap of the Halonitrenium Ions NHX+, NX2+ and the Halocarbenes: CHX, CX2 (X=F, Cl, Br, I)," J. Chem. Soc., Chem. Commun. 1993, 1162-1164, DOI: 10.1039/C39930001162.
  55. Garcia, V. M.; Castell, O.; Reguero, M.; Caballol, R. "Singlet-Triplet Energy Gap in Halogen-Substituted Carbenes and Silylenes: a Difference-Dedicated Configuration Interaction Calculation," Mol. Phys. 1996, 87, 1395-1404, DOI: 10.1080/00268979650026884.
  56. Barden, C. J.; Schaefer, H. F., III "The Singlet-Triplet Separation in Dichlorocarbene: A Surprising Difference between Theory and Experiment," J. Chem. Phys. 2000, 112, 6515-6516, DOI: 10.1063/1.481601.
  57. McKee, M. L.; Michl, J. "A Possible Reinterpretation of the Photoelectron Spectra of [CCl2]-., [CBr2]-. and [CI2]-.: A Role for Quartet Isodihalocarbene Radical Anions?," J. Phys. Chem. A 2002, 106, 8495-8497, DOI: 10.1021/jp021282n.
  58. Wren, S. W.; Vogelhuber, K. M.; Ervin, K. M.; Lineberger, W. C. "The photoelectron spectrum of CCl2-: the convergence of theory and experiment after a decade of debate," Phys. Chem. Chem. Phys. 2009, 11, 4745-4753, DOI: 10.1039/B822690C.
  59. Platz, M. S. In Reactive Intermediate Chemistry; Moss, R. A., Platz, W. S., Jones, M., Jr., Eds.; Wiley-Interscience: Hoboken, NJ, 2004, p 501-560.
  60. Huisgen, R.; Vossius, D.; Appl, M. "Thermolysis of Phenyl Azide in Primary Amines; the Constitution of Dibenzamil," Chem. Ber. 1958, 91, 1-12, DOI: 10.1002/cber.19580910102.
  61. Huisgen, R.; Appl, M. "The Mechanism of the Ring Enlargement in the Decomposition of Phenyl Azide in Aniline," Chem. Ber. 1958, 91, 12-21, DOI: 10.1002/cber.19580910103.
  62. Doering, W. v. E.; Odum, R. A. "Ring enlargement in the photolysis of phenyl azide," Tetrahedron 1966, 22, 81-93, DOI: 10.1016/0040-4020(66)80104-7.
  63. Carroll, S. E.; Nay, B.; Scriven, E. F. V.; Suschitzky, H.; Thomas , D. R. "Decomposition of Aromatic Azides in Ethanethiol," Tetrahedron Lett. 1977, 18, 3175-3178, DOI: 10.1016/S0040-4039(01)83190-7.
  64. Abramovitch, R. A.; Challand, S. R.; Scriven, E. F. V. "Mechanism of Intermolecular Aromatic Substitution by Arylnitrenes," J. Am. Chem. Soc. 1972, 94, 1374-1376, DOI: 10.1021/ja00759a066.
  65. Banks, R. E.; Sparkes, G. R. "Azide chemistry. V. Synthesis of 4-azido-2,3,5,6-tetrafluoro-, 4-azido-3-chloro-2,5,6-trifluoro-, and 4-azido-3,5-dichloro-2,6-difluoropyridine, and thermal reactions of the tetrafluoro compound," J. Chem. Soc., Perkin Trans. 1 1972, 2964-2970, DOI: 10.1039/P19720002964.
  66. Cai, S. X.; J. Glenn, D. J.; Kanskar, M.; Wybourne, M. N.; Keana, J. F. W. "Development of Highly Efficient Deep-UV and Electron Beam Mediated Cross-Linkers: Synthesis and Photolysis of Bis(perfluorophenyl) Azides," Chem. Mater. 1994, 6, 1822-1829, DOI: 10.1021/cm00046a041.
  67. Meijer, E. W.; Nijhuis, S.; van Vroonhoven, V. C. B. M. "Poly-1,2-azepines by the Photopolymerization of Phenyl Azides. Precursors for Conducting Polymer Films," J. Am. Chem. Soc. 1988, 110, 7209-7210, DOI: 10.1021/ja00229a043.
  68. Keana, J. F. W.; Cai, S. X. "New Reagents for Photoaffinity Labeling: Synthesis and Photolysis of Functionalized Perfluorophenyl Azides," J. Org. Chem. 1990, 55, 3640-3647, DOI: 10.1021/jo00298a048.
  69. Schnapp, K. A.; Poe, R.; Leyva, E.; Soundararajan, N.; S., P. M. "Exploratory photochemistry of fluorinated aryl azides. Implications for the design of photoaffinity labeling reagents," Bioconjugate Chem. 1993, 4, 172-177, DOI: 10.1021/bc00020a010.
  70. Kym, P. R.; Anstead, G. M.; Pinney, K. G.; Wilson, S. R.; Katzenellenbogen, J. A. " Molecular structures, conformational analysis, and preferential modes of binding of 3-aroyl-2-arylbenzo[b]thiophene estrogen receptor ligands: LY117018 and aryl azide photoaffinity labeling analogs," J. Med. Chem. 1993, 36, 3910-3922, DOI: 10.1021/jm00076a020.
  71. Kym, P. R.; Carlson, K. E.; Katzenellenbogen, J. A. "Evaluation of a Highly Efficient Aryl Azide Photoaffinity Labeling Reagent for the Progesterone Receptor," Bioconjugate Chem. 1995, 6, 115-122, DOI: 10.1021/bc00031a014.
  72. Kerrigan, S.; Brooks, D. E. "Optimization and Immunological Characterization of a Photochemically Coupled Lysergic Acid Diethylamide (LSD) Immunogen," Bioconjugate Chem. 1998, 9, 596-603, DOI: 10.1021/bc9800320.
  73. Alley, S. C.; Ishmael, F. T.; Jones, A. D.; Benkovic, S. J. " Mapping Protein-Protein Interactions in the Bacteriophage T4 DNA Polymerase Holoenzyme Using a Novel Trifunctional Photo-cross-linking and Affinity Reagent," J. Am. Chem. Soc. 2000, 122, 6126-6127, DOI: 10.1021/ja000591t.
  74. Matzinger, S.; Bally, T.; Patterson, E. V.; McMahon, R. J. "The C7H6 Potential Energy Surface Revisited: Relative Energies and IR Assignment," J. Am. Chem. Soc. 1996, 118, 1535-1542, DOI: 10.1021/ja953579n.
  75. Wong, M. W.; Wentrup, C. "Interconversions of Phenylcarbene, Cycloheptatetraene, Fulvenallene, Benzocyclopropene. A Theoretical Study of the C7H6 Surface," J. Org. Chem. 1996, 61, 7022-7029, DOI: 10.1021/jo960806a.
  76. Polino, D.; Famulari, A.; Cavallotti, C. "Analysis of the Reactivity on the C7H6 Potential Energy Surface," J. Phys. Chem. A 2011, 115, 7928-7936, DOI: 10.1021/jp2019236.
  77. Cramer, C. J.; Dulles, F. J.; Falvey, D. E. "Ab Initio Characterization of Phenylnitrenium and Phenylcarbene: Remarkably Different Properties for Isoelectronic Species," J. Am. Chem. Soc. 1994, 116, 9787-9788, DOI: 10.1021/ja00100a069.
  78. Kim, S.-J.; Hamilton, T. P.; Schaefer, H. F., III "Phenylnitrene: Energetics, Vibrational Frequencies, and Molecular Structure," J. Am. Chem. Soc. 1992, 114, 5349-5355, DOI: 10.1021/ja00039a054.
  79. Hrovat, D. A.; Waali, E. E.; Borden, W. T. "Ab Initio Calculations of the Singlet-Triplet Energy Difference in Phenylnitrene," J. Am. Chem. Soc. 1992, 114, 8698-8699, DOI: 10.1021/ja00048a052.
  80. Karney, W. L.; Borden, W. T. "Ab Initio Study of the Ring Expansion of Phenylnitrene and Comparison with the Ring Expansion of Phenylcarbene," J. Am. Chem. Soc. 1997, 119, 1378-1387, DOI: <10.1021/ja9635241.
  81. Winkler, M. "Singlet−Triplet Energy Splitting and Excited States of Phenylnitrene," J. Phys. Chem. A 2008, 112, 8649-8653, DOI: 10.1021/jp802547c.
  82. Szalay, P. G. "Multireference averaged quadratic coupled-cluster (MR-AQCC) method based on the functional of the total energy," Chem. Phys. 2008, 349, 121-125, DOI: 10.1016/j.chemphys.2008.03.011.
  83. Travers, M. J.; Cowles, D. C.; Clifford, E. P.; Ellison, G. B. "Photoelectron Spectroscopy of the Phenylnitrene Anion," J. Am. Chem. Soc. 1992, 114, 8699-8701, DOI: 10.1021/ja00048a053.
  84. Wijeratne, N. R.; Fonte, M. D.; Ronemus, A.; Wyss, P. J.; Tahmassebi, D.; Wenthold, P. G. "Photoelectron Spectroscopy of Chloro-Substituted Phenylnitrene Anions," J. Phys. Chem. A 2009, 113, 9467-9473, DOI: 10.1021/jp9039594.
  85. Karney, W. L.; Borden, W. T. In Advances in Carbene Chemistry; Brinker, U. H., Ed.; Elsevier Science: Amsterdam, 2001; Vol. 3, p 205-251.
  86. Johnson, W. T. G.; Sullivan, M. B.; Cramer, C. J. "meta and para Substitution Effects on the Electronic State Energies and Ring-Expansion Reactivities of Phenylnitrenes," Int. J. Quantum Chem. 2001, 85, 492-508, DOI: 10.1002/qua.1518.
  87. Wenthold, P. G. "Spin-State Dependent Radical Stabilization in Nitrenes: The Unusually Small Singlet-Triplet Splitting in 2-Furanylnitrene," J. Org. Chem. 2011, 77, 208-214, DOI: 10.1021/jo2016967.
  88. Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.; Kemnitz, C. R.; Platz, M. S. "The Interplay of Theory and Experiment in the Study of Phenylnitrene," Acc. Chem. Res. 2000, 33, 765-771, DOI: 10.1021/ar990030a.
  89. Engelking, P. C.; Lineberger, W. C. "Laser Photoelectron Spectrometry of NH-: Electron Affinity and Intercombination Energy Difference in NH," J. Chem. Phys. 1976, 65, 4323-4324, DOI: 10.1063/1.432845.
  90. Gritsan, N. P.; Zhu, Z.; Hadad, C. M.; Platz, M. S. "Laser Flash Photolysis and Computational Study of Singlet Phenylnitrene," J. Am. Chem. Soc. 1999, 121, 1202-1207, DOI: 10.1021/ja982661q.
  91. Wentrup, C. "Rearrangements and Interconversions of Carbenes and Nitrenes," Top. Curr. Chem. 1976, 62, 173-251, DOI: 10.1007/BFb0046048.
  92. Platz, M. S. "Comparison of Phenylcarbene and Phenylnitrene," Acc. Chem. Res. 1995, 28, 487-492, DOI: 10.1021/ar00060a004.
  93. Kemnitz, C. R.; Karney, W. L.; Borden, W. T. " Why Are Nitrenes More Stable than Carbenes? An Ab Initio Study," J. Am. Chem. Soc. 1998, 120, 3499-3503, DOI: 10.1021/ja973935x.
  94. Hanway, P. J.; Winter, A. H. "Phenyloxenium Ions: More Like Phenylnitrenium Ions than Isoelectronic Phenylnitrenes?," J. Am. Chem. Soc. 2011, 133, 5086-5093, DOI: 10.1021/ja1114612
  95. Dewar, M. J. S.; David, D. E. "Ultraviolet photoelectron spectrum of the phenoxy radical," J. Am. Chem. Soc. 1980, 102, 7387-7389, DOI: 10.1021/ja00544a050
  96. Joines, R. C.; Turner, A. B.; Jones, W. M. "The Rearrangement of Phenylcarbenes to Cycloheptatrienylidenes," J. Am. Chem. Soc. 1969, 91, 7754-7755, DOI: 10.1021/ja50001a045.
  97. West, P. R.; Chapman, O. L.; LeRoux, J. P. "1,2,4,6-Cycloheptatetraene," J. Am. Chem. Soc. 1982, 104, 1779-1782, DOI: 10.1021/ja00370a074.
  98. McMahon, R. J.; Abelt, C. J.; Chapman, O. L.; Johnson, J. W.; Kreil, C. L.; LeRoux, J. P.; Mooring, A. M.; R., W. P. "1,2,4,6-Cycloheptatetraene: the Key Intermediate in Arylcarbene Interconversions and Related C7H6 Rearrangements," J. Am. Chem. Soc. 1987, 109, 2456-2469, DOI: 10.1021/ja00242a034.
  99. Warmuth, R. "Inner-Phase Stabilization of Reactive Intermediates," Eur. J. Org. Chem. 2001, 423-437, DOI: 10.1002/1099-0690(200102)2001:3<423::AID-EJOC423>3.0.CO;2-2.
  100. Vander Stouw, G.; Kraska, A. R.; Shechter, H. "Rearrangement and Insertion Reactions of 2-Methylbenzylidenes," J. Am. Chem. Soc. 1972, 94, 1655-1661, DOI: 10.1021/ja00760a038.
  101. Baron, W. J.; Jones Jr., M.; Gaspar, P. P. "Interconversion of o-, m- and p-Tolylcarbene," J. Am. Chem. Soc. 1970, 92, 4739-4740, DOI: 10.1021/ja00718a600.
  102. Albrecht, S. W.; McMahon, R. J. "Photoequilibration of 2-Naphthylcarbene and 2,3-Benzobicyclo[4.1.0]hepta-2,4,6-triene," J. Am. Chem. Soc. 1993, 115, 855-859, DOI: 10.1021/ja00056a005.
  103. Bonvallet, P. A.; McMahon, R. J. "Photoequilibration of 1-Naphthylcarbene and 4,5-Benzobicyclo[4.1.0]hepta-2,4,6-triene," J. Am. Chem. Soc. 1999, 121, 10496-10503, DOI: 10.1021/ja9920157.
  104. Gritsan, N. P.; Gudmundsdottir, A. D.; Tigelaar, D.; Zhu, Z.; Karney, W. L.; Hadad, C. M.; Platz, M. S. "A Laser Flash Photolysis and Quantum Chemical Study of the Fluorinated Derivatives of Singlet Phenylnitrene," J. Am. Chem. Soc. 2001, 123, 1951-1962, DOI: 10.1021/ja9944305.
  105. Tsao, M.-L.; Platz, M. S. "Photochemistry of Ortho, Ortho' Dialkyl Phenyl Azides," J. Am. Chem. Soc. 2003, 125, 12014-12025, DOI: 10.1021/ja035833e.
  106. Andersson, K.; Roos, B. O. "Multiconfigurational Second-Order Perturbation Theory: A Test of Geometries and Binding Energies," Int. J. Quantum Chem. 1993, 45, 591-607, DOI: 10.1002/qua.560450610.
  107. Andersson, K. "Different Forms of the Zeroth-Order Hamiltonian in Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function," Theor. Chim. Acta 1995, 91, 31-46, DOI: 10.1007/BF01113860.
  108. Warmuth, R.; Makowiec, S. "The Phenylnitrene Rearrangement in the Inner Phase of a Hemicarcerand," J. Am. Chem. Soc. 2005, 127, 1084-1085, DOI: 10.1021/ja044557g.
  109. Schrock, A. K.; Schuster, G. B. "Photochemistry of Phenyl Azide: Chemical Properties of the Transient Intermediates," J. Am. Chem. Soc. 1984, 106, 5228-5234, DOI: 10.1021/ja00330a032.
  110. Li, Y. Z.; Kirby, J. P.; George, M. W.; Poliakoff, M.; Schuster, G. B. "1,2-Didehydroazepines from the photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods," J. Am. Chem. Soc. 1988, 110, 8092-8098, DOI: 10.1021/ja00232a022.
  111. Sitzmann, E. V.; Langan, J.; Eisenthal, K. B. "Intermolecular effects on intersystem crossing studied on the picosecond timescale: the solvent polarity effect on the rate of singlet-to-triplet intersystem crossing of diphenylcarbene," J. Am. Chem. Soc. 1984, 106, 1868-1869, DOI: 10.1021/ja00318a069.
  112. Grasse, P. B.; Brauer, B. E.; Zupancic, J. J.; Kaufmann, K. J.; Schuster, G. B. "Chemical and Physical Properties of Fluorenylidene: Equilibration of the Singlet and Triplet Carbenes," J. Am. Chem. Soc. 1983, 105, 6833-6845, DOI: 10.1021/ja00361a014.
  113. Marcinek, A.; Platz, M. S. "Deduction of the Activation Parameters for Ring Expansion and Intersystem Crossing in Fluorinated Singlet Phenylnitrenes," J. Phys. Chem. 1993, 97, 12674-12677, DOI: 10.1021/j100151a008.
  114. Smith, B. A.; Cramer, C. J. "How Do Different Fluorine Substitution Patterns Affect the Electronic State Energies of Phenylnitrene?," J. Am. Chem. Soc. 1996, 118, 5490-5491, DOI: 10.1021/ja960687g.
  115. Morawietz, J.; Sander, W. "Photochemistry of Fluorinated Phenyl Nitrenes: Matrix Isolation of Fluorinated Azirines," J. Org. Chem. 1996, 61, 4351-4354, DOI: 10.1021/jo960093w.
  116. Sundberg, R. J.; Suter, S. R.; Brenner, M. "Photolysis of o-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates," J. Am. Chem. Soc. 1972, 94, 513-520, DOI: 10.1021/ja00757a032.
  117. Dunkin, I. R.; Donnelly, T.; Lockhart, T. S. "2,6-Dimethylphenylnitrene in Low-Temperature Matrices," Tetrahedron Lett. 1985, 26, 59-362, DOI: 10.1016/S0040-4039(01)80817-0.
  118. Karney, W. L.; Borden, W. T. "Why Does o-Fluorine Substitution Raise the Barrier to Ring Expansion of Phenylnitrene?," J. Am. Chem. Soc. 1997, 119, 3347-3350, DOI: 10.1021/ja9644440.
  119. Levya, E.; Sagredo, R. "Photochemistry of fluorophenyl azides in diethylamine. Nitrene reaction versus ring expansion," Tetrahedron 1998, 54, 7367-7374, DOI: 10.1016/S0040-4020(98)00403-7.
  120. Gritsan, N. P.; Gudmundsdottir, A. D.; Tigelaar, D.; Platz, M. S. "Laser Flash Photolysis Study of Methyl Derivatives of Phenyl Azide," J. Phys. Chem. A 1999, 103, 3458-3461, DOI: 10.1021/jp984624r.
  121. Gritsan, N. P.; Likhotvorik, I.; Tsao, M.-L.; Celebi, N.; Platz, M. S.; Karney, W. L.; Kemnitz, C. R.; Borden, W. T. "Ring-Expansion Reaction of Cyano-Substituted Singlet Phenyl Nitrenes: Theoretical Predictions and Kinetic Results from Laser Flash Photolysis and Chemical Trapping Experiments," J. Am. Chem. Soc. 2001, 123, 1425-1433, DOI: 10.1021/ja002594b.
  122. Hund, F. "The Interpretation of Complicated Spectra," Z. Physik 1925, 33, 345-371, DOI: 10.1007/BF01328319.
  123. Borden, W. T.; Davidson, E. R. "Effects of Electron Repulsion in Conjugated Hydrocarbon Diradicals," J. Am. Chem. Soc. 1977, 99, 4587-4594, DOI: 10.1021/ja00456a010.
  124. Borden, W. T. In Diradicals; Borden, W. T., Ed.; John Wiley & Sons: New York, 1982, p 1-72.
  125. Ovchinnikov, A. A. "Multiplicity of the Ground State of Large Alternant Organic Molecules with Conjugated Bonds (Do Organic Ferromagnets Exist?)," Theor. Chim. Acta 1978, 47, 297-304, DOI: 10.1007/BF00549259.
  126. Miller, J. S.; Epstein, A. J. "Organic and Organometallic Molecular Magnetic Materials - Designer Magnets," Angew. Chem. Int. Ed. Engl. 1994, 33, 385-415, DOI: 10.1002/anie.199403851.
  127. Rajca, A. "From High-Spin Organic Molecules to Organic Polymers with Magnetic Ordering," Chem. Eur. J. 2002, 8, 4834-4841, DOI: 10.1002/1521-3765(20021104)8:21<4834::AID-CHEM4834>3.0.CO;2-E.
  128. Dowd, P.; Chang, W.; Paik, Y. H. "Tetramethyleneethane, a Ground-State Triplet," J. Am. Chem. Soc. 1986, 108, 7416-7417, DOI: 10.1021/ja00283a051.
  129. Du, P.; Borden, W. T. "Ab initio Calculations Predict a Singlet Ground State for Tetramethyleneethane," J. Am. Chem. Soc. 1987, 109, 930-931 (errata J. Am. Chem. Soc.,1992, 1114, 4949), DOI: 10.1021/ja00237a066.
  130. Dowd, P.; Chang, W.; Paik, Y. H. "2,3-Dimethylenecyclohexa-1,3-diene Diradical is a Ground-State Triplet," J. Am. Chem. Soc. 1987, 109, 5284-5285, DOI: 10.1021/ja00251a046.
  131. Roth, W. R.; Kowalczik, U.; Maier, G.; Reisenauer, H. P.; Sustmann, R.; Müller, W. "2,2-Dimethyl-4,5-dimethylene-l,3-cyclopentanediyl," Angew. Chem. Int. Ed. Engl. 1987, 26, 1285-1287, DOI: 10.1002/anie.198712851.
  132. Choi, Y.; Jordan, K. D.; Paik, Y. H.; Chang, W.; Dowd, P. "Ab Initio Calculations of the Geometries and IR Spectra of Two Derivatives of Tetramethyleneethane," J. Am. Chem. Soc. 1988, 110, 7575-7576, DOI: 10.1021/ja00230a068.
  133. Du, P.; Hrovat, D. A.; Borden, W. T. "Ab Initio Calculations of the Singlet-Triplet Energy Separation in 3,4-Dimethylenefuran and Related Diradicals," J. Am. Chem. Soc. 1986, 108, 8086-8087, DOI: 10.1021/ja00285a034.
  134. Nash, J. J.; Dowd, P.; Jordan, K. D. "Theoretical Study of the Low-Lying Triplet and Singlet States of Diradicals: Prediction of Ground-State Multiplicities in Cyclic Analogs of Tetramethyleneethane," J. Am. Chem. Soc. 1992, 114, 10071-10072, DOI: 10.1021/ja00051a055.
  135. Nachtigall, P.; Jordan, K. D. "Theoretical Study of the Low-Lying Triplet and Singlet States of Diradicals. 1. Tetramethyleneethane," J. Am. Chem. Soc. 1992, 114, 4743-4747, DOI: 10.1021/ja00038a042.
  136. Nachtigall, P.; Jordan, K. D. "Theoretical Study of the Low-Lying Triplet and Singlet States of Tetramethyleneethane: Prediction of a Triplet Below Singlet State at the Triplet Equilibrium Geometry," J. Am. Chem. Soc. 1993, 115, 270-271, DOI: 10.1021/ja00054a038.
  137. Clifford, E. P.; Wenthold , P. G.; Lineberger , W. C.; Ellison , G. B.; Wang, C. X.; Grabowski , J. J.; Vila, F.; Jordan, K. D. "Properties of Tetramethyleneethane (TME) as Revealed by Ion Chemistry and Ion Photoelectron Spectroscopy," J. Chem. Soc., Perkin Trans 2 1998, 1015-1022, DOI: 10.1039/a707322d.
  138. Filatov, M.; Shaik, S. "Tetramethyleneethane (TME) Diradical: Experiment and Density Functional Theory Reach an Agreement," J. Phys. Chem. A. 1999, 103, 8885-8889, DOI: 10.1021/jp9920489.
  139. Rodriguez, E.; Reguero, M.; Caballol, R. "The Controversial Ground State of Tetramethyleneethane. An ab Initio CI Study," J. Phys. Chem. A. 2000, 104, 6253-6258, DOI: 10.1021/jp000278d.
  140. Pittner, J.; Nachtigall, P.; Carsky, P.; Hubac, I. "State-Specific Brillouin-Wigner Multireference Coupled Cluster Study of the Singlet-Triplet Separation in the Tetramethyleneethane Diradical," J. Phys. Chem. A. 2001, 105, 1354-1356, DOI: 10.1021/jp0032199.
  141. Cordes, M. H. J.; Berson, J. A. "Thermal interconversion of a pair of diastereomeric cyclopropanones. An upper limit for a cyclopropanone-oxyallyl energy separation," J. Am. Chem. Soc. 1992, 114, 11010-11011, DOI: 10.1021/ja00053a076.
  142. Chan, T. H.; Ong, B. S. "Chemistry of allene oxides," J. Org. Chem. 1978, 43, 2994-3001, DOI: 10.1021/jo00409a013.
  143. Schuster, D. I. "Mechanisms of photochemical transformations of cross-conjugated cyclohexadienones," Acc. Chem. Res. 1978, 11, 65-73, DOI: 10.1021/ar50122a003.
  144. Osamura, Y.; Borden, W. T.; Morokuma, K. "Structure and stability of oxyallyl. An MCSCF study," J. Am. Chem. Soc. 1984, 106, 5112-5115, DOI: 10.1021/ja00330a013.
  145. Coolidge, M. B.; Yamashita, K.; Morokuma, K.; Borden, W. T. "Ab initio MCSCF and CI calculations of the singlet-triplet energy differences in oxyallyl and in dimethyloxyallyl," J. Am. Chem. Soc. 1990, 112, 1751-1754, DOI: 10.1021/ja00161a015.
  146. Mozhayskiy, V.; Goebbert, D. J.; Velarde, L.; Sanov, A.; Krylov, A. I. "Electronic Structure and Spectroscopy of Oxyallyl: A Theoretical Study," J. Phys. Chem. A 2010, 114, 6935-6943, DOI: 10.1021/jp102183z.
  147. Ichino, T.; Villano, S. M.; Gianola, A. J.; Goebbert, D. J.; Velarde, L.; Sanov, A.; Blanksby, S. J.; Zhou, X.; Hrovat, D. A.; Borden, W. T.; Lineberger, W. C. "Photoelectron Spectroscopic Study of the Oxyallyl Diradical," J. Phys. Chem. A 2011, 115, 1634-1649, DOI: 10.1021/jp111311k.
  148. Šimsa, D.; Demel, O.; Bhaskaran-Nair, K.; Hubač, I.; Mach, P.; Pittner, J. "Multireference coupled cluster study of the oxyallyl diradical," Chem. Phys. 2012, 401, 203-207, DOI: 10.1016/j.chemphys.2011.08.018.
  149. Ichino, T.; Villano, S. M.; Gianola, A. J.; Goebbert, D. J.; Velarde, L.; Sanov, A.; Blanksby, S. J.; Zhou, X.; Hrovat, D. A.; Borden, W. T.; Lineberger, W. C. "The Lowest Singlet and Triplet States of the Oxyallyl Diradical," Angew. Chem. Int. Ed. 2009, 48, 8509-8511, DOI: 10.1002/anie.200904417.
  150. Wenk, H. H.; Winkler, M.; Sander, W. "One Century of Aryne Chemistry," Angew. Chem. Int. Ed. 2003, 42, 502-528, DOI: 10.1002/anie.200390151.
  151. Roberts, J. D.; Simmons Jr., H. E.; Carlsmith, L. A.; Vaughan, C. W. "Rearrangement In The Reaction Of Chlorobenzene-1-C14 With Potassium Amide," J. Am. Chem. Soc. 1953, 75, 3290-3291, DOI: 10.1021/ja01109a523.
  152. Berry, R. S.; Spokes, G. N.; Stiles, M. "The Absorption Spectrum of Gaseous Benzyne," J. Am. Chem. Soc. 1962, 84, 3570-3577, DOI: 10.1021/ja00877a031.
  153. Berry, R. S.; Clardy, J.; Schafer, M. E. "Benzyne," J. Am. Chem. Soc. 1964, 86, 2738-2739, DOI: 10.1021/ja01067a057.
  154. Chapman, O. L.; Mattes, K.; McIntosh, C. L.; Pacansky, J.; Calder, G. V.; Orr, G. "Photochemical Transformations. LII. Benzyne," J. Am. Chem. Soc. 1973, 95, 6134-6135, DOI: 10.1021/ja00799a060.
  155. Kukolich, S. G.; Tanjaroon, C.; McCarthy, M. C.; Thaddeus, P. "Microwave Spectrum of o-Benzyne Produced in a Discharge Nozzle," J. Chem. Phys. 2003, 119, 4353-4359, DOI: 10.1063/1.1593015.
  156. Scheiner, A. C.; Schaefer III, H. F.; Bowen Liu, B. "The X1A1 and a3B2 States of o-Benzyne: a Theoretical Characterization of Equilibrium Geometries, Harmonic Vibrational Frequencies, and the Singlet-Triplet Energy Gap," J. Am. Chem. Soc. 1989, 111, 3118-3124, DOI: 10.1021/ja00191a002.
  157. Wentrup, C.; Blanch, R.; Briehl, H.; Gross, G. "Benzyne, Cyclohexyne, and 3-Azacyclohexyne and the Problem of Cycloalkyne versus Cycloalkylideneketene Genesis," J. Am. Chem. Soc. 1988, 110, 1874-1880, DOI: 10.1021/ja00214a034.
  158. Leopold, D. G.; Miller, A. E. S.; Lineberger, W. C. "Determination of the Singlet-Triplet Splitting and Electron Affinity of o-Benzyne by Negative Ion Photoelectron Spectroscopy," J. Am. Chem. Soc. 1986, 108, 1379-1384, DOI: 10.1021/ja00267a003.
  159. Kraka, E.; Cremer, D. "Ortho-, Meta-, and Para-Benzyne. A Comparative CCSD (T) Investigation," Chem. Phys. Lett. 1993, 216, 333-340, DOI: 10.1016/0009-2614(93)90105-A.
  160. Wenthold, P. G. "Thermochemical Properties of the Benzynes," Aus. J. Chem. 2010, 63, 1091-1098, DOI: 10.1071/CH10126.
  161. Wenthold, P. G.; Paulino, J. A.; Squires, R. R. "The Absolute Heats of Formation of o-, m-, and p-Benzyne," J. Am. Chem. Soc. 1991, 113, 7414-7415, DOI: 10.1021/ja00019a044.
  162. Riveros, J. M.; Ingemann, S.; Nibbering, N. M. M. "Formation of Gas Phase Solvated Bromine and Iodine Anions in Ion/Molecule Reactions of Halobenzenes. Revised Heat of Formation of Benzyne," J. Am. Chem. Soc. 1991, 113, 1053-1053, DOI: 10.1021/ja00003a055.
  163. Guo, Y.; Grabowski, J. J. "Reactions of the Benzyne Radical Anion in the Gas Phase, the Acidity of the Phenyl Radical, and the Heat of Formation of o-Benzyne," J. Am. Chem. Soc. 1991, 113, 5923-5931, DOI: 10.1021/ja00016a001.
  164. Jones, R. R.; Bergman, R. G. "p-Benzyne. Generation as an Intermediate in a Thermal Isomerization Reaction and Trapping Evidence for the 1,4-Benzenediyl Structure," J. Am. Chem. Soc. 1972, 94, 660-661, DOI: 10.1021/ja00757a071.
  165. Nicolaides, A.; Borden, W. T. "CI calculations on Didehydrobenzenes Predict Heats of Formation for the meta and para Isomers that are Substantially Higher than Previous Experimental Values," J. Am. Chem. Soc. 1993, 115, 11951-11957, DOI: 10.1021/ja00078a037.
  166. Wierschke, S. G.; Nash, J. J.; Squires, R. R. "A Multiconfigurational SCF and Correlation-Consistent CI Study of the Structures, Stabilities, and Singlet-Triplet Splittings of o-, m-, and p-Benzyne," J. Am. Chem. Soc. 1993, 115, 11958-11967, DOI: 10.1021/ja00078a038.
  167. Wenthold, P. G.; Squires, R. R. "Biradical Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements. Absolute Heats of Formation of ortho-, meta-, and para-Benzyne," J. Am. Chem. Soc. 1994, 116, 6401-6412, DOI: 10.1021/ja00093a047.
  168. Wenthold, P. G.; Squires, R. R.; Lineberger, W. C. "Ultraviolet Photoelectron Spectroscopy of the o-, m-, and p-Benzyne Negative Ions. Electron Affinities and Singlet-Triplet Splittings for o-, m-, and p-Benzyne," J. Am. Chem. Soc. 1998, 120, 5279-5290, DOI: 10.1021/ja9803355.
  169. Cioslowski, J.; Szarecka, A.; Moncrieff, D. "Energetics, Electronic Structures, and Geometries of Didehydroazines," Mol. Phys. 2003, 101, 839 - 858, DOI: 10.1080/0026897021000034512.
  170. Lindh, R.; Lee, T. J.; Bernhardsson, A.; Persson, B. J.; Karlstroem, G. "Extended ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet o-, m-, and p-Benzynes," J. Am. Chem. Soc. 1995, 117, 7186-7194, DOI: 10.1021/ja00132a019.
  171. Cramer, C. J.; Nash, J. J.; Squires, R. R. "A Reinvestigation of Singlet Benzyne Thermochemistry Predicted by CASPT2, Coupled-Cluster and Density Functional Calculations," Chem. Phys. Lett. 1997, 277, 311-320, DOI: 10.1016/S0009-2614(97)00855-5.
  172. Crawford, T. D.; Kraka, E.; Stanton, J. F.; Cremer, D. "Problematic p-Benzyne: Orbital Instabilities, Biradical Character, and Broken Symmetry," J. Chem. Phys. 2001, 114, 10638-10650, DOI: 10.1063/1.1373433.
  173. Gräfenstein, J.; Hjerpe, A. M.; Kraka, E.; Cremer, D. "An Accurate Description of the Bergman Reaction Using Restricted and Unrestricted DFT: Stability Test, Spin Density, and On-Top Pair Density," J. Phys. Chem. A. 2000, 104, 1748-1761, DOI: 10.1021/jp993122q.
  174. Winkler, M.; Sander, W. "The Structure of meta-Benzyne Revisited-A Close Look into σ-Bond Formation," J. Phys. Chem. A. 2001, 105, 10422-10432, DOI: 10.1021/jp012100c.
  175. Kraka, E.; Angladab, J.; Hjerpea, A.; Filatova, M.; Cremer, D. "m-Benzyne and Bicyclo[3.1.0]hexatriene - Which Isomer is more Stable? - A Quantum Chemical Investigation," Chem. Phys. Lett. 2001, 348, 115-125, DOI: 10.1016/S0009-2614(01)01049-1.
  176. Kraka, E.; Cremer, D.; Bucher, G.; Wandel, H.; Sander, W. "A CCSD(T) and DFT Investigation of m-Benzyne and 4-Hydroxy-m-benzyne," Chem. Phys. Lett. 1997, 268, 313-320, DOI: 10.1016/S0009-2614(97)00233-9.
  177. Sander, W.; Exner, M.; Winkler, M.; Balster, A.; Hjerpe, A.; Kraka, E.; Cremer, D. "Vibrational Spectrum of m-Benzyne: A Matrix Isolation and Computational Study," J. Am. Chem. Soc. 2002, 124, 13072-13079, DOI: 10.1021/ja012686g.
  178. Marquardt, R.; Sander, W.; Kraka, E. "1,3-Didehydrobenzene (m-Benzyne)," Angew. Chem. Int. Ed. Engl. 1996, 35, 746-748, DOI: 10.1002/anie.199607461.
  179. Hess Jr., B. A. "Do Bicyclic Forms of m- and p-Benzyne Exist?," Eur. J. Org. Chem. 2001, 2185-2189, DOI: 10.1002/1099-0690(200106)2001:11<2185::AID-EJOC2185>3.0.CO;2-B.
  180. Clauberg, H.; Minsek, D. W.; Chen, P. "Mass and Photoelectron Spectroscopy of C3H2. ΔHf of Singlet Carbenes Deviate from Additivity by Their Singlet-Triplet Gaps," J. Am. Chem. Soc. 1992, 114, 99-107, DOI: 10.1021/ja00027a014.
  181. Blush, J. A.; Clauberg, H.; Kohn, D. W.; Minsek, D. W.; Zhang, X.; Chen, P. "Photoionization Mass and Photoelectron Spectroscopy of Radicals, Carbenes, and Biradicals," Acc. Chem. Res. 1992, 25, 385-392, DOI: 10.1021/ar00021a001.
  182. Chen, P. "Design of Diradical-based Hydrogen Abstraction Agents," Angew. Chem. Int. Ed. Engl. 1996, 35, 1478-1480, DOI: 10.1002/anie.199614781.
  183. Logan, C. F.; Chen, P. "Ab Initio Calculation of Hydrogen Abstraction Reactions of Phenyl Radical and p-Benzyne," J. Am. Chem. Soc. 1996, 118, 2113-2114, DOI: 10.1021/ja953493u.
  184. Schottelius, M. J.; Chen, P. "9,10-Dehydroanthracene: p-Benzyne-Type Biradicals Abstract Hydrogen Unusually Slowly," J. Am. Chem. Soc. 1996, 118, 4896-4903, DOI: 10.1021/ja960181y.
  185. Cramer, C. J.; Squires, R. R. "Prediction of Singlet-Triplet Splittings for Aryne Biradicals from 1H Hyperfine Interactions in Aryl Radicals," J. Phys. Chem. A. 1997, 101, 9191-9194, DOI: 10.1021/jp973119b.
  186. Evangelista, F. A.; Allen, W. D.; Schaefer III, H. F. "Coupling term derivation and general implementation of state-specific multireference coupled cluster theories," J. Chem. Phys 2007, 127, 024102-024117, DOI: 10.1063/1.2743014.
  187. Cramer, C. J. "Bergman, Aza-Bergman, and Protonated Aza-Bergman Cyclizations and Intermediate 2,5-Arynes: Chemistry and Challenges to Computation," J. Am. Chem. Soc. 1998, 120, 6261-6269, DOI: 10.1021/ja9806579.
  188. Kraka, E.; Cremer, D. "The para-Didehydropyridine, para-Didehydropyridinium, and Related Biradicals - a Contribution to the Chemistry of Enediyne Antitumor Drugs," J. Comput. Chem. 2001, 22, 216-229, DOI: 10.1002/1096-987X(20010130)22:2<216::AID-JCC9>3.0.CO;2-X.
  189. Hoffner, J.; Schottelius, M. J.; Feichtinger, D.; Chen, P. "Chemistry of the 2,5-Didehydropyridine Biradical: Computational, Kinetic, and Trapping Studies toward Drug Design," J. Am. Chem. Soc. 1998, 120, 376-385, DOI: 10.1021/ja9730223.
  190. Cramer, C. J.; Debbert , S. "Heteroatomic Substitution in Aromatic Small σ Biradicals: The Six Pyridynes," Chem. Phys. Lett. 1998, 287, 320-326, DOI: 10.1016/S0009-2614(98)00192-4.
  191. Winkler, M.; Cakir, B.; Sander, W. "3,5-Pyridyne-A Heterocyclic meta-Benzyne Derivative," J. Am. Chem. Soc. 2004, 126, 6135-6149, DOI: 10.1021/ja039142u.
  192. Kraka, E.; Tuttle, T.; Cremer, D. "Design of a New Warhead for the Natural Enediyne Dynemicin A. An Increase of Biological Activity," J. Phys. Chem. B 2008, 112, 2661-2670, DOI: 10.1021/jp0773536.
  193. Johnson, W. T. G.; Cramer, C. J. "Influence of Hydroxyl Substitution on Benzyne Properties. Quantum Chemical Characterization of the Didehydrophenols," J. Am. Chem. Soc. 2001, 123, 923-928, DOI: 10.1021/ja002250l.
  194. Johnson, W. G.; Cramer, C. J. "Substituent Effects on Benzyne Electronic Structures," J. Phys. Org. Chem. 2001, 14, 597-603, DOI: 10.1002/poc.402.
  195. Amegayibor, F. S.; Nash, J. J.; Lee, A. S.; Thoen, J.; Petzold, C. J.; Kenttamaa, H. I. " Chemical Properties of a para-Benzyne," J. Am. Chem. Soc. 2002, 124, 12066-12067, DOI: 10.1021/ja027633t.
  196. Clark, A. E.; Davidson, E. R. "p-Benzyne Derivatives That Have Exceptionally Small Singlet-Triplet Gaps and Even a Triplet Ground State," J. Org. Chem. 2003, 68, 3387-3396, DOI: 10.1021/jo026824b.
  197. Price, J. M.; Kenttamaa, H. I. "Characterization of Two Chloro-Substituted m-Benzyne Isomers: Effect of Substitution on Reaction Efficiencies and Products," J. Phys. Chem. A. 2003, 107, 8985-8995, DOI: 10.1021/jp035285r.
  198. Fenton, C.; Perry, C. M. "Spotlight on Gemtuzumab Ozogamicin in Acute Myeloid Leukaemia.," BioDrugs 2006, 20, 137-139, DOI: 10.2165/00063030-200620020-00007.
  199. Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.-N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; de Revel, T.; Gastaud, L.; de Gunzburg, N.; Contentin, N.; Henry, E.; Marolleau, J.-P.; Aljijakli, A.; Rousselot, P.; Fenaux, P.; Preudhomme, C.; Chevret, S.; Dombret, H. "Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study," Lancet, 379, 1508-1516, DOI: 10.1016/s0140-6736(12)60485-1.
  200. Carbene Chemistry: From Fleeting Intermediate To Powerful Reagents; Bertrand, G., Ed.; Marcel Dekker: New York, 2002.
  201. Ley, D.; Gerbig, D.; Schreiner, P. R. "Tunnelling control of chemical reactions - the organic chemist's perspective," Org. Biomol. Chem. 2012, 10, 3781-3790, DOI: 10.1039/C2OB07170C.
  202. Schreiner, P. R.; Reisenauer, H. P.; Pickard Iv, F. C.; Simmonett, A. C.; Allen, W. D.; Matyus, E.; Csaszar, A. G. "Capture of hydroxymethylene and its fast disappearance through tunnelling," Nature 2008, 453, 906-909, DOI: 10.1038/nature07010.
  203. Miller, W. H.; Handy, N. C.; Adams, J. E. "Reaction path Hamiltonian for polyatomic molecules," J. Chem. Phys 1980, 72, 99-112, DOI: 10.1063/1.438959.
  204. Razavy, M. Quantum Theory of Tunneling; World Scientific: Singapore, 2003.
  205. Kiselev, V. G.; Swinnen, S.; Nguyen, V. S.; Gritsan, N. P.; Nguyen, M. T. "Fast Reactions of Hydroxycarbenes: Tunneling Effect versus Bimolecular Processes," J. Phys. Chem. A 2010, 114, 5573-5579, DOI: 10.1021/jp911655a.
  206. Gerbig, D.; Reisenauer, H. P.; Wu, C.-H.; Ley, D.; Allen, W. D.; Schreiner, P. R. "Phenylhydroxycarbene," J. Am. Chem. Soc. 2010, 132, 7273-7275, DOI: 10.1021/ja9107885.
  207. Ley, D.; Gerbig, D.; Wagner, J. P.; Reisenauer, H. P.; Schreiner, P. R. "Cyclopropylhydroxycarbene," J. Am. Chem. Soc. 2011, 133, 13614-13621, DOI: 10.1021/ja204507j.
  208. Schreiner, P. R.; Reisenauer, H. P. "Spectroscopic Identification of Dihydroxycarbene," Angew. Chem. Int. Ed. 2008, 47, 7071-7074, DOI: 10.1002/anie.200802105
  209. Schreiner, P. R.; Reisenauer, H. P.; Ley, D.; Gerbig, D.; Wu, C.-H.; Allen, W. D. "Methylhydroxycarbene: Tunneling Control of a Chemical Reaction," Science 2011, 332, 1300-1303, DOI: 10.1126/science.1203761.
  210. Rosenfeld, R. N.; Weiner, B. "Energy disposal in the photofragmentation of pyruvic acid in the gas phase," J. Am. Chem. Soc. 1983, 105, 3485-3488, DOI: 10.1021/ja00349a019.
  211. Weiner, B. R.; Rosenfeld, R. N. "Pyrolysis of pyruvic acid in the gas phase. A study of the isomerization mechanism of a hydroxycarbene intermediate," J. Org. Chem. 1983, 48, 5362-5364, DOI: 10.1021/jo00174a042.
  212. Yamamoto, S.; Back, R. A. "The photolysis and thermal decomposition of pyruvic acid in the gas phase," Can. J. Chem. 1985, 63, 549-554, DOI: 10.1139/v85-089.
  213. Smith, B. J.; Nguyen Minh, T.; Bouma, W. J.; Radom, L. "Unimolecular rearrangements connecting hydroxyethylidene (CH3-C-OH), acetaldehyde (CH3-CH=O), and vinyl alcohol (CH2=CH-OH)," J. Am. Chem. Soc. 1991, 113, 6452-6458, DOI: 10.1021/ja00017a015.