About the Book
Citations
Molecules
Chapter 6 Citations
- Moylan, C. R.; Brauman, J. I. In Advances
in Classical Trajectory Methods; Hase, W., Ed.; JAI Press: Greenwich, CT,
1994; Vol. 2, p 95-114.
-
Chabinyc, M. L.; Craig, S. L.; Regan, C. K.;
Brauman, J. I. "Gas-Phase Ionic Reactions: Dynamics and Mechanism of
Nucleophilic Displacements," Science
1998, 279, 1882-1886, DOI: 10.1126/science.279.5358.1882.
-
Dedieu, A.; Veillard, A. "Comparative Study
of Some SN2 Reactions through ab Initio Calculations," J. Am. Chem. Soc. 1972, 94, 6730-6738, DOI:
10.1021/ja00774a028.
-
Keil, F.; Ahlrichs, R. "Theoretical Study of
SN2 Reactions. Ab initio Computations on HF and CI Level," J. Am. Chem. Soc. 1976, 98, 4787-4793, DOI:
10.1021/ja00432a017.
-
Wolfe, S.; Mitchell, D. J.; Schlegel, H. B.
"Theoretical Studies of SN2 Transition States. 1.
Geometries," J. Am. Chem. Soc. 1981, 103, 7692-7694, DOI: 10.1021/ja00415a068.
-
Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L.
"SN2 Reaction Profiles in the Gas Phase and Aqueous
Solution," J. Am. Chem. Soc. 1984, 106, 3049-3050, DOI: 10.1021/ja00322a059.
-
Shi, Z.; Boyd, R. J. "An ab initio Study of
Model SN2 Reactions with Inclusion of Electron Correlation Effects
through Second-Order Moeller-Plesset Perturbation Calculations," J. Am. Chem. Soc. 1990, 112, 6789-6796,
DOI: 10.1021/ja00175a008.
-
Wolfe, S.; Kim, C.-K. "Secondary H/D Isotope
Effects in Methyl-Transfer Reactions Decrease with Increasing Looseness of the
Transition Structure," J. Am. Chem.
Soc. 1991, 113, 8056-8061, DOI: 10.1021/ja00021a035
.
-
Wladkowski, B. D.; Allen, W. D.; Brauman, J. I.
"The SN2 Identity Exchange Reaction F- + CH3F
.fwdarw. FCH3 + F-: Definitive ab Initio
Predictions," J. Phys. Chem. 1994, 98, 13532-13540, DOI: 10.1021/j100102a018
.
-
Gonzales, J. M.; Cox, R. S., III; Brown, S. T.;
Allen, W. D.; Schaefer, H. F., III "Assessment of Density Functional
Theory for Model SN2 Reactions: CH3X + F- (X =
F, Cl, CN, OH, SH, NH2, PH2)," J. Phys. Chem. A. 2001, 105, 11327-11346, DOI: 10.1021/jp012892a.
-
Streitwieser, A.; Choy, G. S.-C.; Abu-Hasanayn,
F. "Theoretical Study of Ion Pair SN2 Reactions: Ethyl vs
Methyl Reactivities and Extension to Higher Alkyls," J. Am. Chem. Soc. 1997, 119, 5013-5019, DOI: 10.1021/ja961673d.
-
Parthiban, S.; de Oliveira, G.; Martin, J. M. L.
"Benchmark ab Initio Energy Profiles for the Gas-Phase SN2
Reactions Y- + CH3X → CH3Y + X- (X,Y = F,Cl,Br). Validation of Hybrid
DFT Methods," J. Phys. Chem. A. 2001, 105, 895-904, DOI: 10.1021/jp0031000.
-
Glukhovtsev, M. N.; Pross, A.; Radom, L.
"Gas-Phase Identity SN2 Reactions of Halide Anions with Methyl
Halides: A High-Level Computational Study," J. Am. Chem. Soc. 1995, 117, 2024-2032, DOI: 10.1021/ja00112a016.
-
Gonzales, J. M.; Pak, C.; Cox, R. S.; Allen, W.
D.; Schaefer, H. F. I.; Császár, A. G.; Tarczay, G. "Definitive Ab Initio
Studies of Model SN2 Reactions CH3X+F- (X=F,
Cl, CN, OH, SH, NH2, PH2)," Chem. Eur. J. 2003, 9, 2173-2192, DOI: 10.1002/chem.200204408.
-
Bento, A. P. c.; Bickelhaupt, F. M.
"Nucleophilicity and Leaving-Group Ability in Frontside and Backside SN2
Reactions," J. Org. Chem. 2008, 73, 7290-7299, DOI: 10.1021/jo801215z.
-
Tucker, S. C.; Truhlar, D. G. "Ab Initio
Calculations of the Transition-State Geometry and Vibrational Frequencies of
the SN2 Reaction of Cl- with CH3Cl," J. Phys. Chem. 1989, 93, 8138-8142, DOI:
10.1021/j100362a004.
-
Glukhovtsev, M. N.; Bach, R. D.; Pross, A.;
Radom, L. "The Performance of B3-LYP Density Functional Theory in
Describing SN2 Reactions at Saturated Carbon," Chem. Phys. Lett. 1996, 260, 558-564, DOI: 10.1016/0009-2614(96)00923-2.
-
Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B.
"High-Pressure Mass Spectrometric Investigations of the Potential Energy
Surfaces of Gas-Phase SN2 Reactions," J. Am. Chem. Soc. 1996, 118, 9360-9367, DOI: 10.1021/ja960565o.
-
Wladkowski, B. D.; Brauman, J. I.
"Application of Marcus Theory to Gas-Phase SN2 Reactions:
Experimental Support of the Marcus Theory Additivity Postulate," J. Phys. Chem. 1993, 97, 13158-13164,
DOI: 10.1021/j100152a021.
-
Caldwell, G.; Magnera, T. F.; Kebarle, P. "SN2
reactions in the gas phase. Temperature dependence of the rate constants and
energies of the transition states. Comparison with solution," J. Am. Chem. Soc. 1984, 106, 959-966, DOI: 10.1021/ja00316a023.
-
Knighton, W. B.; Bognar, J. A.; O'Connor, P. M.;
Grimsrud, E. P. "Gas-phase SN2 reactions of chloride ion with
alkyl bromides at atmospheric pressure. Temperature dependence of the rate
constants and energies of the transition states," J. Am. Chem. Soc. 1993, 115, 12079-12084, DOI: 10.1021/ja00078a053.
-
Olmstead, W. N.; Brauman, J. I. "Gas-Phase
Nucleophilic Displacement Reactions," J.
Am. Chem. Soc. 1977, 99, 4219-4228, DOI: 10.1021/ja00455a002.
-
Pellerite, M. J.; Brauman, J. I. "Intrinsic
Barriers in Nucleophilic Displacements. A General Model for Intrinsic
Nucleophilicity Toward Methyl Centers," J. Am. Chem. Soc. 1983, 105, 2672-2680, DOI: 10.1021/ja00347a026.
-
Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry;
3rd ed.; Harper and Row: New York, 1987.
-
Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; 2nd
ed.; Wiley: Hoboken, NJ, 2010.
-
DePuy, C. H.; Gronert, S.; Mullin, A.; Bierbaum,
V. M. "Gas-Phase SN2 and E2 Reactions of Alkyl
Halides," J. Am. Chem. Soc. 1990, 112, 8650-8655, DOI: 10.1021/ja00180a003.
-
Regan, C. K.; Craig, S. L.; Brauman, J. I.
"Steric Effects and Solvent Effects in Ionic Reactions," Science 2002, 295, 2245 -2247,
DOI: 10.1126/science.1068849.
-
Chen, X.; Regan, C. K.; Craig, S. L.; Krenske, E.
H.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. "Steric and Solvation
Effects in Ionic SN2 Reactions," J. Am. Chem. Soc. 2009, 131, 16162-16170, DOI: 10.1021/ja9053459.
-
Jensen, F. "A Theoretical Study of Steric
Effects in SN2 Reactions," Chem.
Phys. Lett. 1992, 196, 368-376, DOI: 10.1016/0009-2614(92)85984-I.
-
Gronert, S. "Theoretical Studies of
Elimination Reactions. 3. Gas-Phase Reactions of Fluoride Ion with (CH3)2CHCl
and CH3CH2CH2Cl. The Effect of Methyl
Substituents," J. Am. Chem. Soc.
1993, 115, 652-659, DOI: 10.1021/ja00055a039.
-
Vayner, G.; Houk, K. N.; Jorgensen, W. L.;
Brauman, J. I. "Steric Retardation of SN2 Reactions in the Gas
Phase and Solution," J. Am. Chem.
Soc. 2004, 126, 9054-9058, DOI: 10.1021/ja049070m.
-
Kim, Y.; Cramer, C. J.; Truhlar, D. G.
"Steric Effects and Solvent Effects on SN2 Reactions," J. Phys. Chem. A 2009, 113, 9109-9114,
DOI: 10.1021/jp905429p
-
Glukhovtsev, M. N.; Pross, A.; Schlegel, H. B.;
Bach, R. D.; Radom, L. "Gas-Phase Identity SN2 Reactions of
Halide Anions and Methyl Halides with Retention of Configuration," J. Am. Chem. Soc. 1996, 118, 1258-11264,
DOI: 10.1021/ja9620191.
-
Sauers, R. R. "Inversion vs Retention of
Configuration in Gas-Phase Ammonium Ion/Alcohol Reactions," J. Org. Chem. 2002, 67, 1221-1226, DOI:
10.1021/jo016267d.
-
Despeyroux, D.; Cole, R. B.; Tabet, J. C.
"Ion-Molecule Reactions in the Gas Phase. XVIII. Benzoates under Ammonia
Chemical Ionization," Org. Mass
Spectrom. 1992, 27, 300-308, DOI: 10.1002/oms.1210270323.
-
Laerdahl, J. K.; Uggerud, E. "Nucleophilic
identity substitution reactions. The reaction between water and protonated
alcohols," Org. Biomol. Chem. 2003, 1, 2935-2942, DOI: 10.1039/B302268D.
-
Perham, R. N. "Domains, Motifs, and Linkers
in 2-oxo Acid Dehydrogenase Multienzyme Complexes: a Paradigm in the Design of
a Multifunctional Protein," Biochemistry
1991, 30, 8501-8512, DOI: 10.1021/bi00099a001.
-
Tanaka, K.; Mackay, G. I.; Payzant, J. D.; Bohme,
D. K. "Gas-phase Reactions of Anions with Halogenated Methanes at 297
± 2 ° K," Can. J. Chem. 1976, 54, 1643-1659, DOI:10.1139/v76-234.
-
Bohme, D. K.; Raksit, A. B. "Gas-phase
measurements of the influence of stepwise solvation on the kinetics of
nucleophilic displacement reactions with chloromethane and bromomethane at room
temperature," J. Am. Chem. Soc. 1984, 106, 3447-3452, DOI: 10.1021/ja00324a011.
-
Viggiano, A. A.; Arnold, S. T.; Morris, R. A.;
Ahrens, A. F.; Hierl, P. M. "Temperature Dependences of the Rate Constants
and Branching Ratios for the Reactions of OH-(H2O)0-4
+ CH3Br," J. Phys. Chem.
1996, 100, 14397 - 14402, DOI: 10.1021/jp961250y.
-
Seeley, J. V.; Morris, R. A.; Viggiano, A. A.
"Temperature Dependences of the Rate Constants and Branching Ratios for
the Reactions of F-(H2O)0-5 with CH3Br,"
J. Phys. Chem. A 1997, 101, 4598 - 4601,
DOI: 10.1021/jp970492a.
-
Jorgensen, W. L.; Chandrasekhar, J.; D., M. J.;
W., I. R.; Klein, M. L. "Comparison of Simple Potential Functions for
Simulating Liquid Water," J. Chem.
Phys. 1983, 79, 926-935, DOI: 10.1063/1.445869.
-
McLennan, D. J. "Semiempirical Calculation
of Rates of SN2 Finkelstein Reactions in Solution by a
Quasi-Thermodynamic Cycle," Aust. J.
Chem. 1978, 31, 1897-1909, DOI:
10.1071/CH9781897.
-
Cossi, M.; C., A.; Barone, V. "Solvent
Effects on an SN2 Reaction Profile," Chem. Phys. Lett. 1998, 297, 1-7, DOI: 10.1016/S0009-2614(98)01091-4.
-
Mohamed, A. A.; Jensen, F. " Steric Effects
in SN2 Reactions. The Influence of Microsolvation," J. Phys. Chem. A. 2001, 105, 3259-3268,
DOI: 10.1021/jp002802m.
-
Hughes, E. D.; Ingold, C. K.; Mackie, J. D. H.
"Mechanism of Substitution at a Saturated Carbon Atom. XLIII. Kinetics of
the Interaction of Chloride Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc. 1955, 3173-3177, DOI: 10.1039/jr9550003173.
-
De la Mare, P. B. D. "Mechanism of
Substitution at a Saturated Carbon Atom. XLV. Kinetics of the Interaction of
Bromide Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc. 1955,
3180-3187, DOI: 10.1039/jr9550003180.
-
Morokuma, K. "Potential Energy Surface of
the SN2 Reaction in Hydrated Clusters," J. Am. Chem. Soc. 1982, 104, 3732-3733, DOI: 10.1021/ja00377a037.
-
Hayes, J. M.; Bachrach, S. M. " Effect of
Micro and Bulk Solvation on the Mechanism of Nucleophilic Substitution at
Sulfur in Disulfides," J. Phys.
Chem. A 2003, 107, 7952-7961, DOI: 10.1021/jp035407f.
-
DeTar, D. F.; McMullen, D. F.; Luthra, N. P.
"Steric effects in SN2 reactions," J. Am. Chem. Soc. 1978, 100, 2484-2493, DOI: 10.1021/ja00476a036.
-
Cram, D. J.; Kopecky, K. R. "Studies in
Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction," J. Am. Chem. Soc. 1959, 81, 2748-2755,
DOI: 10.1021/ja01520a036.
-
Karabatsos, G. J. "Asymmetric Induction. A
Model for Additions to Carbonyls Directly Bonded to Asymmetric Carbons," J. Am. Chem. Soc. 1967, 89, 1367-1371,
DOI: 10.1021/ja00982a015.
-
Chérest, M.; Felkin, H.; Prudent, N.
"Torsional strain involving partial bonds. The stereochemistry of the
lithium aluminium hydride reduction of some simple open-chain ketones," Tetrahedron Lett. 1968, 9, 2199-2204, DOI: 10.1016/S0040-4039(00)89719-1.
-
Anh, N. T.; Eisenstein, O. "Theoretical
Interpretation of 1-2 Asymmetric Induction - Importance of Antiperiplanarity,"
Nouv. J. Chim. 1977, 1, 61-70.
-
Lodge, E. P.; Heathcock, C. H. "Acyclic
Stereoselection. 40. Steric Effects, as Well as σ*-Orbital Energies, are Important
in Diastereoface Differentiation in Additions to Chiral Aldehydes," J. Am. Chem. Soc. 1987, 109, 3353-3361,
DOI: 10.1021/ja00245a027.
-
Kaufmann, E.; Schleyer, P. v. R.; Houk, K. N.;
Wu, Y.-D. "Ab Initio Mechanisms for the Addition of CH3Li, HLi,
and Their Dimers to Formaldehyde," J.
Am. Chem. Soc. 1985, 107, 5560-5562, DOI: 10.1021/ja00305a058.
-
Wong, S. S.; Paddon-Row, M. N. "Theoretical
Evidence in Support of the Anh-Eisenstein Electronic Model in Controlling π-Facial Stereoselectivity in
Nucleophilic Additions to Carbonyl Compounds," J. Chem. Soc., Chem. Commun. 1990,
456 - 458, DOI: 10.1039/C39900000456.
-
Gung, B. W. "Diastereofacial Selection in
Nucleophilic Additions to Unsymmetrically Substituted Trigonal Carbons," Tetrahedron 1996, 52, 5263-5301, DOI:
10.1016/0040-4020(95)01023-8.
-
Houk, K. N. "Perspective on
"Theoretical interpretation of 1-2 asymmetric induction. The importance of
antiperiplanarity": Anh NT, Eisenstein O (1977) Nouv J Chim 1:
61-70," Theor. Chem. Acc. 2000, 103, 330 - 331, DOI: 10.1007/s002149900037.
-
Cieplak, A. S. "Stereochemistry of
Nucleophilic Addition to Cyclohexanone. The Importance of Two-Electron
Stabilizing Interactions," J. Am.
Chem. Soc. 1981, 103, 4540-4552, DOI: 10.1021/ja00405a041.
-
Cieplak, A. S.; Tait, B. D.; Johnson, C. R.
"Reversal of π-Facial Diastereoselection upon Electronegative Substitution of the
Substrate and the Reagent," J. Am.
Chem. Soc. 1989, 111, 8447-8462, DOI: 10.1021/ja00204a018.
-
Halterman, R. L.; McEvoy, M. A.
"Diastereoselectivity in the Reduction of Sterically Unbiased
2,2-Diarylcyclopentanones," J. Am.
Chem. Soc. 1990, 112, 6690-6695, DOI: 10.1021/ja00174a036.
-
Kaselj, M.; Chung, W.-S.; le Noble, W. J.
"Face Selection in Addition and Elimination in Sterically Unbiased
Systems," Chem. Rev. 1999, 99, 1387-1414, DOI: 10.1021/cr980364y.
-
Wu, Y. D.; Houk, K. N. "Electronic and
Conformational Effects on π-Facial Stereoselectivity in Nucleophilic Additions to Carbonyl
Compounds," J. Am. Chem. Soc. 1987, 908-910, DOI: 10.1021/ja00237a051.
-
Adcock, W.; Abeywickrema, A. N. "Substituent
Effects in the Bicyclo[2.2.2]octane Ring System. A Carbon-13 and Fluorine-19
Nuclear Magnetic Resonance Study of 4-Substituted Bicyclo[2.2.2]oct-1-yl
Fluorides," J. Org. Chem. 1982, 47, 2957-2966, DOI: 10.1021/jo00136a029.
-
Laube, T.; Ha, T. K. "Detection of
Hyperconjugative Effects in Experimentally Determined Structures of Neutral
Molecules," J. Am. Chem. Soc. 1988, 110, 5511-5517, DOI: 10.1021/ja00224a040.
-
Rozeboom, M. D.; Houk, K. N. "Stereospecific
Alkyl Group Effects on Amine Lone-pair Ionization Potentials: Photoelectron
Spectra of Alkylpiperidines," J. Am.
Chem. Soc. 1982, 104, 1189-1191, DOI: 10.1021/ja00369a006.
-
Frenking, G.; Koehler, K. F.; Reetz, M. T.
"The Origin of π-Facial Diastereofacial Selectivity in Addition Reactions to Cyclohexane-Based
Systems," Angew. Chem., Int. Ed.
Engl 1991, 30, 1146-1149, DOI: 10.1002/anie.199111461.
-
Frenking, G.; F., K. K.; Reetz, M. T. "On
the Origin of π-Facial Diastereoselectivity in Nucleophilic Additions to Chiral Carbonyl
Compounds. 2. Calculated Transition State Structures for the Addition of
Nucleophiles to Propionaldehyde 1, Chloroacetyldehyde 2, and
2-Chloropropionaldehyde 3.," Tetrahedron
1991, 47, 9005-9018, DOI: 10.1016/S0040-4020(01)86505-4.
-
Wong, S. S.; Paddon-Row, M. N. "The
importance of electrostatic effects in controlling π-facial stereoselectivity in
nucleophilic additions to carbonyl compounds: an ab initio MO study of a
prototype chelation model," J. Chem.
Soc., Chem. Commun. 1991, 327-330,
DOI: 10.1039/C39910000327.
-
Wu, Y.-D.; Tucker, J. A.; Houk, K. N.
"Stereoselectivities of nucleophilic additions to cyclohexanones
substituted by polar groups. Experimental investigation of reductions of
trans-decalones and theoretical studies of cyclohexanone reductions. The
influence of remote electrostatic effects," J. Am. Chem. Soc. 1991, 113, 5018-5027, DOI: 10.1021/ja00013a042.
-
Luibrand, R. T.; Taigounov, I. R.; Taigounov, A.
A. "A Theoretical Study of the Reaction of Lithium Aluminum Hydride with
Formaldehyde and Cyclohexanone," J.
Org. Chem. 2001, 66, 7254-7262, DOI: 10.1021/jo005754a.
-
Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N.
"Electrostatic Control of the Stereochemistry of Nucleophilic Additions to
Substituted 7-Norbornanones," J. Am.
Chem. Soc. 1992, 114, 10638-10639, DOI: 10.1021/ja00052a071.
-
Williams, L.; Paddon-Row, M. N.
"Electrostatic and steric control of π-facial stereoselectivity in nucleophilic additions of
LiH and MeLi to endo-5,6-disubstituted norbornen-7-ones: an ab initio MO
study," J. Chem. Soc., Chem. Commun.
1994, 353-355, DOI: 10.1039/C39940000353.
-
Wilmot, N.; Marsella, M. J. "Visualization
Method to Predict the Nucleophilic Asymmetric Induction of Prochiral
Electrophiles," Org. Lett. 2006, 8, 3109-3112, DOI: 10.1021/ol061224a.
-
Fleming, I.; Hrovat, D. A.; Borden, W. T.
"The Origin of Felkin-Anh Control from an Electropositive Substituent
Adjacent to the Carbonyl Group," J.
Chem. Soc., Perkin Trans. 2 2001,
331-338, DOI: 10.1039/b008409n.
-
Smith, R. J.; Trzoss, M.; Bühl, M.; Bienz, S.
"The Cram Rule Revisited Once More - Revision of the Felkin-Anh
Model," Eur. J. Org. Chem. 2002, 2770 - 2775, DOI: 10.1002/1099-0690(200208)2002:16<2770::AID-EJOC2770>3.0.CO;2-X.
-
Yang, X.; Liu, P.; Houk, K. N.; Birman, V. B.
"Manifestation of Felkin-Anh Control in Enantioselective Acyl Transfer
Catalysis: Kinetic Resolution of Carboxylic Acids," Angew. Che, Int. Ed. 2012,
51, 9638-9642, DOI: 10.1002/anie.201203327.
-
Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press:
Orlando, Fla, 1984; Vol. 3, p111-212.
-
Atkinson, R. S. Stereoselective Synthesis; Wiley: Chichester, UK, 1995.
-
Machajewski, T. D.; Wong, C.-H. "The
Catalytic Asymmetric Aldol Reaction," Angew.
Chem. Int. Ed. 2000, 39, 1352 - 1375, DOI: 10.1021/jo00925a003.
-
Eder, U.; Sauer, G.; Wiechert, R. "New Type
of Asymmetric Cyclization to Optically Active Steroid CD Partial
Structures," Angew. Chem. Int. Ed.
Engl. 1971, 10, 496-497, DOI: 10.1002/anie.197104961.
-
Agami, C.; Platzer, N.; Sevestre, H.
"Enantioselective Cyclizations of Acyclic 1,5-Diketones," Bul. Soc. Chim. Fr.
1987, 2, 358-360.
-
List, B. "Introduction:
Organocatalysis," Chem. Rev. 2007, 107, 5413-5415, DOI: 10.1021/cr078412e.
-
List, B. "Emil Knoevenagel and the Roots of
Aminocatalysis," Angew. Che, Int.
Ed. 2010, 49, 1730-1734, DOI: 10.1002/anie.200906900.
-
List, B. "Proline-Catalyzed Asymmetric
Reactions," Tetrahedron 2002, 58, 5573-5590, DOI: 10.1016/S0040-4020(02)00516-1.
-
List, B. "Enamine Catalysis Is a Powerful
Strategy for the Catalytic Generation and Use of Carbanion Equivalents," Acc. Chem. Res. 2004, 37, 548-557, DOI: 10.1021/ar0300571.
-
Notz, W.; Tanaka, F.; Barbas, C. F., III "
Enamine-Based Organocatalysis with Proline and Diamines: The Development of
Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels-Alder
Reactions," Acc. Chem. Res. 2004, 37, 580-591, DOI: 10.1021/ar0300468.
-
Northrup, A. B.; MacMillan, D. W. C. "The
First General Enantioselective Catalytic Diels-Alder Reaction with Simple α,β-Unsaturated Ketones," J. Am. Chem. Soc. 2002, 124, 2458-2460,
DOI: 10.1021/ja017641u.
-
Paras, N. A.; MacMillan, D. W. C. "The
Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to &aplha;,β-Unsaturated Aldehydes," J. Am. Chem. Soc. 2002, 124, 7894-7895,
DOI: 10.1021/ja025981p.
-
Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C.
"The First Enantioselective Organocatalytic Mukaiyama-Michael Reaction: A
Direct Method for the Synthesis of Enantioenriched γ-Butenolide
Architecture," J. Am. Chem. Soc.
2003, 125, 1192-1194, DOI: 10.1021/ja029095q.
-
Kunz, R. K.; MacMillan, D. W. C. "
Enantioselective Organocatalytic Cyclopropanations. The Identification of a New
Class of Iminium Catalyst Based upon Directed Electrostatic Activation," J. Am. Chem. Soc. 2005, 127, 3240-3241,
DOI: 10.1021/ja042774b.
-
Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III;
"Direct Organocatalytic Asymmetric Aldol Reactions of α-Amino Aldehydes:
Expedient Syntheses of Highly Enantiomerically Enriched anti-β-Hydroxy-α-amino
Acids," Org. Lett. 2004, 6, 3541-3544, DOI: 10.1021/ol0485417.
-
Mangion, I. K.; MacMillan, D. W. C. "Total
Synthesis of Brasoside and Littoralisone," J. Am. Chem. Soc. 2005, 127, 3696-3697, DOI: 10.1021/ja050064f.
-
Northrup, A. B.; MacMillan, D. W. C. "The
First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes," J. Am. Chem. Soc. 2002, 124, 6798-6799,
DOI: 10.1021/ja0262378.
-
List, B. P., P.; Castello, C.;
"Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes," Org. Lett. 2001, 3, 573-575, DOI: 10.1021/ol006976y.
-
Mase, N.; Tanaka, F.; Barbas, C. F., III
"Synthesis of -Hydroxyaldehydes with Stereogenic Quaternary Carbon Centers
by Direct Organocatalytic Asymmetric Aldol Reactions," Angew. Chem. Int. Ed. 2004, 43, 2420-2423, DOI: 10.1002/anie.200353546.
-
Pidathala, C.; Hoang, L.; Vignola, N.; List, B.
"Direct Catalytic Asymmetric Enolexo Aldolizations," Angew. Chem. Int. Ed. 2003,
42, 2785-2788, DOI: 10.1002/anie.200351266.
-
Notz, W.; List, B. "Catalytic Asymmetric
Synthesis of anti-1,2-Diols," J. Am. Chem. Soc. 2000, 122, 7386-7387,
DOI: 10.1021/ja001460v.
-
Cheong, P. H.-Y.; Legault, C. Y.; Um, J. M.;
Çelebi-Ölçüm, N.; Houk, K. N. "Quantum Mechanical
Investigations of Organocatalysis: Mechanisms, Reactivities, and
Selectivities," Chem. Rev. 2011, 111, 5042-5137, DOI: 10.1021/cr100212h.
-
List, B.; Lerner, R. A.; Barbas, C. F., III;
"Proline-Catalyzed Direct Asymmetric Aldol Reactions," J. Am. Chem. Soc. 2000, 122, 2395-2396,
DOI: 10.1021/ja994280y.
-
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F.,
III; "Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic
Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions," J. Am. Chem. Soc. 2001, 123, 5260-5267,
DOI: 10.1021/ja010037z.
-
Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B.
" Kinetic and Stereochemical Evidence for the Involvement of Only One
Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular
Aldol Reactions," J. Am. Chem. Soc.
2003, 125, 16-17, DOI: 10.1021/ja028634o.
-
List, B.; Hoang, L.; J. Martin, H. J. "New
Mechanistic Studies on the Proline-Catalyzed Aldol Reaction," Proc. Nat. Acad. Sci. USA 2004, 101, 5839-5842, DOI: 10.1073/pnas.0307979101.
-
Agami, C.; Puchot, C.; Sevestre, H. "Is the
Mechanism of the Proline-Catalyzed Enantioselective Aldol Reaction Related to
Biochemical Processes?," Tetrahedron
Lett. 1986, 27, 1501-4150, DOI: 10.1016/S0040-4039(00)84297-5.
-
Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.;
Agami, C.; Kagan, H. B. "Nonlinear Effects in Asymmetric Synthesis.
Examples in Asymmetric Oxidations and Aldolization Reactions," J. Am. Chem. Soc. 1986, 108, 2353-2357,
DOI: 10.1021/ja00269a036.
-
Jung, M. E. "A Review of Annulation," Tetrahedron 1976, 32, 3-31, DOI: 10.1016/0040-4020(76)80016-6.
-
Rankin, K. N.; Gauld, J. W.; Boyd, R. J.
"Density Functional Study of the Proline-Catalyzed Direct Aldol
Reaction," J. Phys. Chem. A. 2002, 106, 5155-5159, DOI: 10.1021/jp020079p.
-
Bahmanyar, S.; Houk, K. N. "Transition
States of Amine-Catalyzed Aldol Reactions Involving Enamine Intermediates:
Theoretical Studies of Mechanism, Reactivity, and Stereoselectivity," J. Am. Chem. Soc. 2001, 123, 11273-11283,
DOI: 10.1021/ja011403h.
-
Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List,
B. "Quantum Mechanical Predictions of the Stereoselectivities of
Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions," J. Am. Chem. Soc. 2003, 125, 2475-2479,
DOI: 10.1021/ja028812d.
-
Allemann, C.; Um, J. M.; Houk, K. N.
"Computational investigations of the stereoselectivities of
proline-related catalysts for aldol reactions," J. Mol. Cat. A: Chem. 2010,
324, 31-38, DOI: 10.1016/j.molcata.2010.03.020.
-
Cordova, A.; Zou, W.; Ibrahem, I.; Reyes, E.;
Engqvist, M.; Liao, W.-W. "Acyclic amino acid-catalyzed direct asymmetric
aldol reactions: alanine, the simplest stereoselective organocatalyst," Chem. Commun. 2005, 3586-3588, DOI: 10.1039/B507968N.
-
Bassan, A.; Zou, W.; Reyes, E.; Himo, F.;
Córdova, A. "The Origin of Stereoselectivity in Primary Amino Acid
Catalyzed Intermolecular Aldol Reactions," Angewandte Chemie International Edition 2005, 44, 7028-7032, DOI:
10.1002/anie.200502388.
-
Shinisha, C. B.; Sunoj, R. B. "Bicyclic
Proline Analogues as Organocatalysts for Stereoselective Aldol Reactions: an in silico DFT Study," Org. Biomol. Chem. 2007, 5, 1287-1294, DOI: 10.1039/b701688c.
-
Lam, Y.-h.; Houk, K. N.; Scheffler, U.;
Mahrwald, R. "Stereoselectivities of Histidine-Catalyzed Asymmetric Aldol
Additions and Contrasts with Proline Catalysis: A Quantum Mechanical
Analysis," J. Am. Chem. Soc. 2012, 134, 6286-6295, DOI: 10.1021/ja2118392.
-
Seebach, D.; Beck, A. K.; Badine, D. M.;
Limbach, M.; Eschenmoser, A.; Treasurywala, A. M.; Hobi, R.; Prikoszovich, W.;
Linder, B. "Are Oxazolidinones Really Unproductive, Parasitic Species in
Proline Catalysis? - Thoughts and Experiments Pointing to an Alternative
View," Helv. Chim. Acta 2007, 90, 425-471, DOI: 10.1002/hlca.200790050.
-
Sharma, A.; Sunoj, R. "Enamine versus
Oxazolidinone: What Controls Stereoselectivity in Proline-Catalyzed Asymmetric
Aldol Reactions?," Angew. Chem. Int.
Ed. 2010, 49, 6373-6377, DOI: 10.1002/anie.201001588
-
Bahmanyar, S.; Houk, K. N. "The Origin of
Stereoselectivity in Proline-Catalyzed Intramolecular Aldol Reactions," J. Am. Chem. Soc. 2001, 123, 12911-12912,
DOI: 10.1021/ja011714s.
-
Clemente, F. R.; Houk, K. N. "Computational
Evidence for the Enamine Mechanism of Intramolecular Aldol Reactions Catalyzed
by Proline," Angew. Chem. Int. Ed.
2004, 43, 5766-5768, DOI: 10.1002/anie.200460916.
-
Zhu, H.; Clemente, F. R.; Houk, K. N.; Meyer, M.
P. "Rate Limiting Step Precedes C-C Bond Formation in the Archetypical
Proline-Catalyzed Intramolecular Aldol Reaction," J. Am. Chem. Soc. 2009, 131, 1632-1633, DOI: 10.1021/ja806672y.
-
Cheong, P. H.-Y.; Houk, K. N. "Origins and
Predictions of Stereoselectivity in Intramolecular Aldol Reactions Catalyzed by
Proline Derivatives," Synthesis 2005, 1533-1537, DOI: 10.1055/s-2005-865332.
-
List, B.; Pojarliev, P.; Biller, W. T.; Martin,
H. J. "The Proline-Catalyzed Direct Asymmetric Three-Component Mannich
Reaction: Scope, Optimization, and Application to the Highly Enantioselective
Synthesis of 1,2-Amino Alcohols," J.
Am. Chem. Soc. 2002, 124, 827-833, DOI: 10.1021/ja0174231.
-
Bahmanyar, S.; Houk, K. N. "Origins of
Opposite Absolute Stereoselectivities in Proline-Catalyzed Direct Mannich and
Aldol Reactions," Org. Lett. 2003, 5, 1249-1251, DOI: 10.1021/ol034198e.
-
Parasuk, W.; Parasuk, V. "Theoretical Investigations
on the Stereoselectivity of the Proline Catalyzed Mannich Reaction in
DMSO," J. Org. Chem. 2008, 73, 9388-9392, DOI: 10.1021/jo801872w.
-
Mitsumori, S.; Zhang, H.; Ha-YeonCheong, P.;
Houk, K. N.; Tanaka, F.; Barbas, C. F. "Direct Asymmetric anti-Mannich-Type Reactions Catalyzed by
a Designed Amino Acid," J. Am. Chem.
Soc. 2006, 128, 1040-1041, DOI: 10.1021/ja056984f.
-
Wheeler, S. E.; Moran, A.; Pieniazek, S. N.;
Houk, K. N. "Accurate Reaction Enthalpies and Sources of Error in DFT
Thermochemistry for Aldol, Mannich, and α-Aminoxylation Reactions," J. Phys. Chem. A 2009, 113, 10376-10384, DOI: 10.1021/jp9058565
-
Singh, R.; Tsuneda, T.; Hirao, K. "An
examination of density functionals on aldol, Mannich and α-aminoxylation
reaction enthalpy calculations," Theor.
Chem. Acc. 2011, 130, 153-160, DOI: 10.1007/s00214-011-0944-6.
-
Dickerson, T. J.; Janda, K. D. "Aqueous
Aldol Catalysis by a Nicotine Metabolite," J. Am. Chem. Soc. 2002, 124, 3220-3221, DOI: 10.1021/ja017774f.
-
Dickerson, T. J.; Lovell, T.; Meijler, M. M.;
Noodleman, L.; Janda, K. D. "Nornicotine Aqueous Aldol Reactions:
Synthetic and Theoretical Investigations into the Origins of Catalysis," J. Org. Chem. 2004, 69, 6603-6609, DOI:
10.1021/jo048894j.
-
Zhang, X.; Houk, K. N. "Acid/Base Catalysis
by Pure Water: The Aldol Reaction," J.
Org. Chem. 2005, 70, 9712-9716, DOI: 10.1021/jo0509455.
-
Taylor, M. S.; Jacobsen, E. N. "Asymmetric
Catalysis by Chiral Hydrogen-Bond Donors," Angew. Che, Int. Ed. 2006, 45, 1520-1543, DOI: 10.1002/anie.200503132.
-
Doyle, A. G.; Jacobsen, E. N.
"Small-Molecule H-Bond Donors in Asymmetric Catalysis," Chem. Rev. 2007, 107, 5713-5743,
DOI: 10.1021/cr068373r.
-
Uyeda, C.; Jacobsen, E. N.
"Enantioselective Claisen Rearrangements with a Hydrogen-Bond Donor
Catalyst," J. Am. Chem. Soc. 2008, 130, 9228-9229, DOI: 10.1021/ja803370x.
-
Brown, A. R.; Uyeda, C.; Brotherton, C. A.;
Jacobsen, E. N. "Enantioselective Thiourea-Catalyzed Intramolecular
Cope-Type Hydroamination," J. Am.
Chem. Soc. 2013, 135, 6747-6749, DOI: 10.1021/ja402893z.
-
Uyeda, C.; Rötheli, A. R.; Jacobsen, E. N.
"Catalytic Enantioselective Claisen Rearrangements of O-Allyl
β-Ketoesters," Angew. Chem.
Int. Ed. 2010, DOI: 10.1002/anie.201005183.
-
Uyeda, C.; Jacobsen, E. N. "Transition-State
Charge Stabilization through Multiple Non-covalent Interactions in the
Guanidinium-Catalyzed Enantioselective Claisen Rearrangement," J. Am. Chem. Soc. 2011, 133, 5062-5075,
DOI: 10.1021/ja110842s.