About the Book

Citations

Molecules

  • » Under Construction

Chapter 6 Citations

  1. Moylan, C. R.; Brauman, J. I. In Advances in Classical Trajectory Methods; Hase, W., Ed.; JAI Press: Greenwich, CT, 1994; Vol. 2, p 95-114.
  2. Chabinyc, M. L.; Craig, S. L.; Regan, C. K.; Brauman, J. I. "Gas-Phase Ionic Reactions: Dynamics and Mechanism of Nucleophilic Displacements," Science 1998, 279, 1882-1886, DOI: 10.1126/science.279.5358.1882.
  3. Dedieu, A.; Veillard, A. "Comparative Study of Some SN2 Reactions through ab Initio Calculations," J. Am. Chem. Soc. 1972, 94, 6730-6738, DOI: 10.1021/ja00774a028.
  4. Keil, F.; Ahlrichs, R. "Theoretical Study of SN2 Reactions. Ab initio Computations on HF and CI Level," J. Am. Chem. Soc. 1976, 98, 4787-4793, DOI: 10.1021/ja00432a017.
  5. Wolfe, S.; Mitchell, D. J.; Schlegel, H. B. "Theoretical Studies of SN2 Transition States. 1. Geometries," J. Am. Chem. Soc. 1981, 103, 7692-7694, DOI: 10.1021/ja00415a068.
  6. Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. "SN2 Reaction Profiles in the Gas Phase and Aqueous Solution," J. Am. Chem. Soc. 1984, 106, 3049-3050, DOI: 10.1021/ja00322a059.
  7. Shi, Z.; Boyd, R. J. "An ab initio Study of Model SN2 Reactions with Inclusion of Electron Correlation Effects through Second-Order Moeller-Plesset Perturbation Calculations," J. Am. Chem. Soc. 1990, 112, 6789-6796, DOI: 10.1021/ja00175a008.
  8. Wolfe, S.; Kim, C.-K. "Secondary H/D Isotope Effects in Methyl-Transfer Reactions Decrease with Increasing Looseness of the Transition Structure," J. Am. Chem. Soc. 1991, 113, 8056-8061, DOI: 10.1021/ja00021a035 .
  9. Wladkowski, B. D.; Allen, W. D.; Brauman, J. I. "The SN2 Identity Exchange Reaction F- + CH3F .fwdarw. FCH3 + F-: Definitive ab Initio Predictions," J. Phys. Chem. 1994, 98, 13532-13540, DOI: 10.1021/j100102a018 .
  10. Gonzales, J. M.; Cox, R. S., III; Brown, S. T.; Allen, W. D.; Schaefer, H. F., III "Assessment of Density Functional Theory for Model SN2 Reactions: CH3X + F- (X = F, Cl, CN, OH, SH, NH2, PH2)," J. Phys. Chem. A. 2001, 105, 11327-11346, DOI: 10.1021/jp012892a.
  11. Streitwieser, A.; Choy, G. S.-C.; Abu-Hasanayn, F. "Theoretical Study of Ion Pair SN2 Reactions: Ethyl vs Methyl Reactivities and Extension to Higher Alkyls," J. Am. Chem. Soc. 1997, 119, 5013-5019, DOI: 10.1021/ja961673d.
  12. Parthiban, S.; de Oliveira, G.; Martin, J. M. L. "Benchmark ab Initio Energy Profiles for the Gas-Phase SN2 Reactions Y- + CH3X → CH3Y + X- (X,Y = F,Cl,Br). Validation of Hybrid DFT Methods," J. Phys. Chem. A. 2001, 105, 895-904, DOI: 10.1021/jp0031000.
  13. Glukhovtsev, M. N.; Pross, A.; Radom, L. "Gas-Phase Identity SN2 Reactions of Halide Anions with Methyl Halides: A High-Level Computational Study," J. Am. Chem. Soc. 1995, 117, 2024-2032, DOI: 10.1021/ja00112a016.
  14. Gonzales, J. M.; Pak, C.; Cox, R. S.; Allen, W. D.; Schaefer, H. F. I.; Császár, A. G.; Tarczay, G. "Definitive Ab Initio Studies of Model SN2 Reactions CH3X+F- (X=F, Cl, CN, OH, SH, NH2, PH2)," Chem. Eur. J. 2003, 9, 2173-2192, DOI: 10.1002/chem.200204408.
  15. Bento, A. P. c.; Bickelhaupt, F. M. "Nucleophilicity and Leaving-Group Ability in Frontside and Backside SN2 Reactions," J. Org. Chem. 2008, 73, 7290-7299, DOI: 10.1021/jo801215z.
  16. Tucker, S. C.; Truhlar, D. G. "Ab Initio Calculations of the Transition-State Geometry and Vibrational Frequencies of the SN2 Reaction of Cl- with CH3Cl," J. Phys. Chem. 1989, 93, 8138-8142, DOI: 10.1021/j100362a004.
  17. Glukhovtsev, M. N.; Bach, R. D.; Pross, A.; Radom, L. "The Performance of B3-LYP Density Functional Theory in Describing SN2 Reactions at Saturated Carbon," Chem. Phys. Lett. 1996, 260, 558-564, DOI: 10.1016/0009-2614(96)00923-2.
  18. Li, C.; Ross, P.; Szulejko, J. E.; McMahon, T. B. "High-Pressure Mass Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase SN2 Reactions," J. Am. Chem. Soc. 1996, 118, 9360-9367, DOI: 10.1021/ja960565o.
  19. Wladkowski, B. D.; Brauman, J. I. "Application of Marcus Theory to Gas-Phase SN2 Reactions: Experimental Support of the Marcus Theory Additivity Postulate," J. Phys. Chem. 1993, 97, 13158-13164, DOI: 10.1021/j100152a021.
  20. Caldwell, G.; Magnera, T. F.; Kebarle, P. "SN2 reactions in the gas phase. Temperature dependence of the rate constants and energies of the transition states. Comparison with solution," J. Am. Chem. Soc. 1984, 106, 959-966, DOI: 10.1021/ja00316a023.
  21. Knighton, W. B.; Bognar, J. A.; O'Connor, P. M.; Grimsrud, E. P. "Gas-phase SN2 reactions of chloride ion with alkyl bromides at atmospheric pressure. Temperature dependence of the rate constants and energies of the transition states," J. Am. Chem. Soc. 1993, 115, 12079-12084, DOI: 10.1021/ja00078a053.
  22. Olmstead, W. N.; Brauman, J. I. "Gas-Phase Nucleophilic Displacement Reactions," J. Am. Chem. Soc. 1977, 99, 4219-4228, DOI: 10.1021/ja00455a002.
  23. Pellerite, M. J.; Brauman, J. I. "Intrinsic Barriers in Nucleophilic Displacements. A General Model for Intrinsic Nucleophilicity Toward Methyl Centers," J. Am. Chem. Soc. 1983, 105, 2672-2680, DOI: 10.1021/ja00347a026.
  24. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; 3rd ed.; Harper and Row: New York, 1987.
  25. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; 2nd ed.; Wiley: Hoboken, NJ, 2010.
  26. DePuy, C. H.; Gronert, S.; Mullin, A.; Bierbaum, V. M. "Gas-Phase SN2 and E2 Reactions of Alkyl Halides," J. Am. Chem. Soc. 1990, 112, 8650-8655, DOI: 10.1021/ja00180a003.
  27. Regan, C. K.; Craig, S. L.; Brauman, J. I. "Steric Effects and Solvent Effects in Ionic Reactions," Science 2002, 295, 2245 -2247, DOI: 10.1126/science.1068849.
  28. Chen, X.; Regan, C. K.; Craig, S. L.; Krenske, E. H.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. "Steric and Solvation Effects in Ionic SN2 Reactions," J. Am. Chem. Soc. 2009, 131, 16162-16170, DOI: 10.1021/ja9053459.
  29. Jensen, F. "A Theoretical Study of Steric Effects in SN2 Reactions," Chem. Phys. Lett. 1992, 196, 368-376, DOI: 10.1016/0009-2614(92)85984-I.
  30. Gronert, S. "Theoretical Studies of Elimination Reactions. 3. Gas-Phase Reactions of Fluoride Ion with (CH3)2CHCl and CH3CH2CH2Cl. The Effect of Methyl Substituents," J. Am. Chem. Soc. 1993, 115, 652-659, DOI: 10.1021/ja00055a039.
  31. Vayner, G.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. "Steric Retardation of SN2 Reactions in the Gas Phase and Solution," J. Am. Chem. Soc. 2004, 126, 9054-9058, DOI: 10.1021/ja049070m.
  32. Kim, Y.; Cramer, C. J.; Truhlar, D. G. "Steric Effects and Solvent Effects on SN2 Reactions," J. Phys. Chem. A 2009, 113, 9109-9114, DOI: 10.1021/jp905429p
  33. Glukhovtsev, M. N.; Pross, A.; Schlegel, H. B.; Bach, R. D.; Radom, L. "Gas-Phase Identity SN2 Reactions of Halide Anions and Methyl Halides with Retention of Configuration," J. Am. Chem. Soc. 1996, 118, 1258-11264, DOI: 10.1021/ja9620191.
  34. Sauers, R. R. "Inversion vs Retention of Configuration in Gas-Phase Ammonium Ion/Alcohol Reactions," J. Org. Chem. 2002, 67, 1221-1226, DOI: 10.1021/jo016267d.
  35. Despeyroux, D.; Cole, R. B.; Tabet, J. C. "Ion-Molecule Reactions in the Gas Phase. XVIII. Benzoates under Ammonia Chemical Ionization," Org. Mass Spectrom. 1992, 27, 300-308, DOI: 10.1002/oms.1210270323.
  36. Laerdahl, J. K.; Uggerud, E. "Nucleophilic identity substitution reactions. The reaction between water and protonated alcohols," Org. Biomol. Chem. 2003, 1, 2935-2942, DOI: 10.1039/B302268D.
  37. Perham, R. N. "Domains, Motifs, and Linkers in 2-oxo Acid Dehydrogenase Multienzyme Complexes: a Paradigm in the Design of a Multifunctional Protein," Biochemistry 1991, 30, 8501-8512, DOI: 10.1021/bi00099a001.
  38. Tanaka, K.; Mackay, G. I.; Payzant, J. D.; Bohme, D. K. "Gas-phase Reactions of Anions with Halogenated Methanes at 297 ± 2 ° K," Can. J. Chem. 1976, 54, 1643-1659, DOI:10.1139/v76-234.
  39. Bohme, D. K.; Raksit, A. B. "Gas-phase measurements of the influence of stepwise solvation on the kinetics of nucleophilic displacement reactions with chloromethane and bromomethane at room temperature," J. Am. Chem. Soc. 1984, 106, 3447-3452, DOI: 10.1021/ja00324a011.
  40. Viggiano, A. A.; Arnold, S. T.; Morris, R. A.; Ahrens, A. F.; Hierl, P. M. "Temperature Dependences of the Rate Constants and Branching Ratios for the Reactions of OH-(H2O)0-4 + CH3Br," J. Phys. Chem. 1996, 100, 14397 - 14402, DOI: 10.1021/jp961250y.
  41. Seeley, J. V.; Morris, R. A.; Viggiano, A. A. "Temperature Dependences of the Rate Constants and Branching Ratios for the Reactions of F-(H2O)0-5 with CH3Br," J. Phys. Chem. A 1997, 101, 4598 - 4601, DOI: 10.1021/jp970492a.
  42. Jorgensen, W. L.; Chandrasekhar, J.; D., M. J.; W., I. R.; Klein, M. L. "Comparison of Simple Potential Functions for Simulating Liquid Water," J. Chem. Phys. 1983, 79, 926-935, DOI: 10.1063/1.445869.
  43. McLennan, D. J. "Semiempirical Calculation of Rates of SN2 Finkelstein Reactions in Solution by a Quasi-Thermodynamic Cycle," Aust. J. Chem. 1978, 31, 1897-1909, DOI: 10.1071/CH9781897.
  44. Cossi, M.; C., A.; Barone, V. "Solvent Effects on an SN2 Reaction Profile," Chem. Phys. Lett. 1998, 297, 1-7, DOI: 10.1016/S0009-2614(98)01091-4.
  45. Mohamed, A. A.; Jensen, F. " Steric Effects in SN2 Reactions. The Influence of Microsolvation," J. Phys. Chem. A. 2001, 105, 3259-3268, DOI: 10.1021/jp002802m.
  46. Hughes, E. D.; Ingold, C. K.; Mackie, J. D. H. "Mechanism of Substitution at a Saturated Carbon Atom. XLIII. Kinetics of the Interaction of Chloride Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc. 1955, 3173-3177, DOI: 10.1039/jr9550003173.
  47. De la Mare, P. B. D. "Mechanism of Substitution at a Saturated Carbon Atom. XLV. Kinetics of the Interaction of Bromide Ions with Simple Alkyl Bromides in Acetone," J. Chem. Soc. 1955, 3180-3187, DOI: 10.1039/jr9550003180.
  48. Morokuma, K. "Potential Energy Surface of the SN2 Reaction in Hydrated Clusters," J. Am. Chem. Soc. 1982, 104, 3732-3733, DOI: 10.1021/ja00377a037.
  49. Hayes, J. M.; Bachrach, S. M. " Effect of Micro and Bulk Solvation on the Mechanism of Nucleophilic Substitution at Sulfur in Disulfides," J. Phys. Chem. A 2003, 107, 7952-7961, DOI: 10.1021/jp035407f.
  50. DeTar, D. F.; McMullen, D. F.; Luthra, N. P. "Steric effects in SN2 reactions," J. Am. Chem. Soc. 1978, 100, 2484-2493, DOI: 10.1021/ja00476a036.
  51. Cram, D. J.; Kopecky, K. R. "Studies in Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction," J. Am. Chem. Soc. 1959, 81, 2748-2755, DOI: 10.1021/ja01520a036.
  52. Karabatsos, G. J. "Asymmetric Induction. A Model for Additions to Carbonyls Directly Bonded to Asymmetric Carbons," J. Am. Chem. Soc. 1967, 89, 1367-1371, DOI: 10.1021/ja00982a015.
  53. Chérest, M.; Felkin, H.; Prudent, N. "Torsional strain involving partial bonds. The stereochemistry of the lithium aluminium hydride reduction of some simple open-chain ketones," Tetrahedron Lett. 1968, 9, 2199-2204, DOI: 10.1016/S0040-4039(00)89719-1.
  54. Anh, N. T.; Eisenstein, O. "Theoretical Interpretation of 1-2 Asymmetric Induction - Importance of Antiperiplanarity," Nouv. J. Chim. 1977, 1, 61-70.
  55. Lodge, E. P.; Heathcock, C. H. "Acyclic Stereoselection. 40. Steric Effects, as Well as σ*-Orbital Energies, are Important in Diastereoface Differentiation in Additions to Chiral Aldehydes," J. Am. Chem. Soc. 1987, 109, 3353-3361, DOI: 10.1021/ja00245a027.
  56. Kaufmann, E.; Schleyer, P. v. R.; Houk, K. N.; Wu, Y.-D. "Ab Initio Mechanisms for the Addition of CH3Li, HLi, and Their Dimers to Formaldehyde," J. Am. Chem. Soc. 1985, 107, 5560-5562, DOI: 10.1021/ja00305a058.
  57. Wong, S. S.; Paddon-Row, M. N. "Theoretical Evidence in Support of the Anh-Eisenstein Electronic Model in Controlling π-Facial Stereoselectivity in Nucleophilic Additions to Carbonyl Compounds," J. Chem. Soc., Chem. Commun. 1990, 456 - 458, DOI: 10.1039/C39900000456.
  58. Gung, B. W. "Diastereofacial Selection in Nucleophilic Additions to Unsymmetrically Substituted Trigonal Carbons," Tetrahedron 1996, 52, 5263-5301, DOI: 10.1016/0040-4020(95)01023-8.
  59. Houk, K. N. "Perspective on "Theoretical interpretation of 1-2 asymmetric induction. The importance of antiperiplanarity": Anh NT, Eisenstein O (1977) Nouv J Chim 1: 61-70," Theor. Chem. Acc. 2000, 103, 330 - 331, DOI: 10.1007/s002149900037.
  60. Cieplak, A. S. "Stereochemistry of Nucleophilic Addition to Cyclohexanone. The Importance of Two-Electron Stabilizing Interactions," J. Am. Chem. Soc. 1981, 103, 4540-4552, DOI: 10.1021/ja00405a041.
  61. Cieplak, A. S.; Tait, B. D.; Johnson, C. R. "Reversal of π-Facial Diastereoselection upon Electronegative Substitution of the Substrate and the Reagent," J. Am. Chem. Soc. 1989, 111, 8447-8462, DOI: 10.1021/ja00204a018.
  62. Halterman, R. L.; McEvoy, M. A. "Diastereoselectivity in the Reduction of Sterically Unbiased 2,2-Diarylcyclopentanones," J. Am. Chem. Soc. 1990, 112, 6690-6695, DOI: 10.1021/ja00174a036.
  63. Kaselj, M.; Chung, W.-S.; le Noble, W. J. "Face Selection in Addition and Elimination in Sterically Unbiased Systems," Chem. Rev. 1999, 99, 1387-1414, DOI: 10.1021/cr980364y.
  64. Wu, Y. D.; Houk, K. N. "Electronic and Conformational Effects on π-Facial Stereoselectivity in Nucleophilic Additions to Carbonyl Compounds," J. Am. Chem. Soc. 1987, 908-910, DOI: 10.1021/ja00237a051.
  65. Adcock, W.; Abeywickrema, A. N. "Substituent Effects in the Bicyclo[2.2.2]octane Ring System. A Carbon-13 and Fluorine-19 Nuclear Magnetic Resonance Study of 4-Substituted Bicyclo[2.2.2]oct-1-yl Fluorides," J. Org. Chem. 1982, 47, 2957-2966, DOI: 10.1021/jo00136a029.
  66. Laube, T.; Ha, T. K. "Detection of Hyperconjugative Effects in Experimentally Determined Structures of Neutral Molecules," J. Am. Chem. Soc. 1988, 110, 5511-5517, DOI: 10.1021/ja00224a040.
  67. Rozeboom, M. D.; Houk, K. N. "Stereospecific Alkyl Group Effects on Amine Lone-pair Ionization Potentials: Photoelectron Spectra of Alkylpiperidines," J. Am. Chem. Soc. 1982, 104, 1189-1191, DOI: 10.1021/ja00369a006.
  68. Frenking, G.; Koehler, K. F.; Reetz, M. T. "The Origin of π-Facial Diastereofacial Selectivity in Addition Reactions to Cyclohexane-Based Systems," Angew. Chem., Int. Ed. Engl 1991, 30, 1146-1149, DOI: 10.1002/anie.199111461.
  69. Frenking, G.; F., K. K.; Reetz, M. T. "On the Origin of π-Facial Diastereoselectivity in Nucleophilic Additions to Chiral Carbonyl Compounds. 2. Calculated Transition State Structures for the Addition of Nucleophiles to Propionaldehyde 1, Chloroacetyldehyde 2, and 2-Chloropropionaldehyde 3.," Tetrahedron 1991, 47, 9005-9018, DOI: 10.1016/S0040-4020(01)86505-4.
  70. Wong, S. S.; Paddon-Row, M. N. "The importance of electrostatic effects in controlling π-facial stereoselectivity in nucleophilic additions to carbonyl compounds: an ab initio MO study of a prototype chelation model," J. Chem. Soc., Chem. Commun. 1991, 327-330, DOI: 10.1039/C39910000327.
  71. Wu, Y.-D.; Tucker, J. A.; Houk, K. N. "Stereoselectivities of nucleophilic additions to cyclohexanones substituted by polar groups. Experimental investigation of reductions of trans-decalones and theoretical studies of cyclohexanone reductions. The influence of remote electrostatic effects," J. Am. Chem. Soc. 1991, 113, 5018-5027, DOI: 10.1021/ja00013a042.
  72. Luibrand, R. T.; Taigounov, I. R.; Taigounov, A. A. "A Theoretical Study of the Reaction of Lithium Aluminum Hydride with Formaldehyde and Cyclohexanone," J. Org. Chem. 2001, 66, 7254-7262, DOI: 10.1021/jo005754a.
  73. Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N. "Electrostatic Control of the Stereochemistry of Nucleophilic Additions to Substituted 7-Norbornanones," J. Am. Chem. Soc. 1992, 114, 10638-10639, DOI: 10.1021/ja00052a071.
  74. Williams, L.; Paddon-Row, M. N. "Electrostatic and steric control of π-facial stereoselectivity in nucleophilic additions of LiH and MeLi to endo-5,6-disubstituted norbornen-7-ones: an ab initio MO study," J. Chem. Soc., Chem. Commun. 1994, 353-355, DOI: 10.1039/C39940000353.
  75. Wilmot, N.; Marsella, M. J. "Visualization Method to Predict the Nucleophilic Asymmetric Induction of Prochiral Electrophiles," Org. Lett. 2006, 8, 3109-3112, DOI: 10.1021/ol061224a.
  76. Fleming, I.; Hrovat, D. A.; Borden, W. T. "The Origin of Felkin-Anh Control from an Electropositive Substituent Adjacent to the Carbonyl Group," J. Chem. Soc., Perkin Trans. 2 2001, 331-338, DOI: 10.1039/b008409n.
  77. Smith, R. J.; Trzoss, M.; Bühl, M.; Bienz, S. "The Cram Rule Revisited Once More - Revision of the Felkin-Anh Model," Eur. J. Org. Chem. 2002, 2770 - 2775, DOI: 10.1002/1099-0690(200208)2002:16<2770::AID-EJOC2770>3.0.CO;2-X.
  78. Yang, X.; Liu, P.; Houk, K. N.; Birman, V. B. "Manifestation of Felkin-Anh Control in Enantioselective Acyl Transfer Catalysis: Kinetic Resolution of Carboxylic Acids," Angew. Che, Int. Ed. 2012, 51, 9638-9642, DOI: 10.1002/anie.201203327.
  79. Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: Orlando, Fla, 1984; Vol. 3, p111-212.
  80. Atkinson, R. S. Stereoselective Synthesis; Wiley: Chichester, UK, 1995.
  81. Machajewski, T. D.; Wong, C.-H. "The Catalytic Asymmetric Aldol Reaction," Angew. Chem. Int. Ed. 2000, 39, 1352 - 1375, DOI: 10.1021/jo00925a003.
  82. Eder, U.; Sauer, G.; Wiechert, R. "New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures," Angew. Chem. Int. Ed. Engl. 1971, 10, 496-497, DOI: 10.1002/anie.197104961.
  83. Agami, C.; Platzer, N.; Sevestre, H. "Enantioselective Cyclizations of Acyclic 1,5-Diketones," Bul. Soc. Chim. Fr. 1987, 2, 358-360.
  84. List, B. "Introduction:  Organocatalysis," Chem. Rev. 2007, 107, 5413-5415, DOI: 10.1021/cr078412e.
  85. List, B. "Emil Knoevenagel and the Roots of Aminocatalysis," Angew. Che, Int. Ed. 2010, 49, 1730-1734, DOI: 10.1002/anie.200906900.
  86. List, B. "Proline-Catalyzed Asymmetric Reactions," Tetrahedron 2002, 58, 5573-5590, DOI: 10.1016/S0040-4020(02)00516-1.
  87. List, B. "Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of Carbanion Equivalents," Acc. Chem. Res. 2004, 37, 548-557, DOI: 10.1021/ar0300571.
  88. Notz, W.; Tanaka, F.; Barbas, C. F., III " Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels-Alder Reactions," Acc. Chem. Res. 2004, 37, 580-591, DOI: 10.1021/ar0300468.
  89. Northrup, A. B.; MacMillan, D. W. C. "The First General Enantioselective Catalytic Diels-Alder Reaction with Simple α,β-Unsaturated Ketones," J. Am. Chem. Soc. 2002, 124, 2458-2460, DOI: 10.1021/ja017641u.
  90. Paras, N. A.; MacMillan, D. W. C. "The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to &aplha;,β-Unsaturated Aldehydes," J. Am. Chem. Soc. 2002, 124, 7894-7895, DOI: 10.1021/ja025981p.
  91. Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. "The First Enantioselective Organocatalytic Mukaiyama-Michael Reaction: A Direct Method for the Synthesis of Enantioenriched γ-Butenolide Architecture," J. Am. Chem. Soc. 2003, 125, 1192-1194, DOI: 10.1021/ja029095q.
  92. Kunz, R. K.; MacMillan, D. W. C. " Enantioselective Organocatalytic Cyclopropanations. The Identification of a New Class of Iminium Catalyst Based upon Directed Electrostatic Activation," J. Am. Chem. Soc. 2005, 127, 3240-3241, DOI: 10.1021/ja042774b.
  93. Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III; "Direct Organocatalytic Asymmetric Aldol Reactions of α-Amino Aldehydes: Expedient Syntheses of Highly Enantiomerically Enriched anti-β-Hydroxy-α-amino Acids," Org. Lett. 2004, 6, 3541-3544, DOI: 10.1021/ol0485417.
  94. Mangion, I. K.; MacMillan, D. W. C. "Total Synthesis of Brasoside and Littoralisone," J. Am. Chem. Soc. 2005, 127, 3696-3697, DOI: 10.1021/ja050064f.
  95. Northrup, A. B.; MacMillan, D. W. C. "The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes," J. Am. Chem. Soc. 2002, 124, 6798-6799, DOI: 10.1021/ja0262378.
  96. List, B. P., P.; Castello, C.; "Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes," Org. Lett. 2001, 3, 573-575, DOI: 10.1021/ol006976y.
  97. Mase, N.; Tanaka, F.; Barbas, C. F., III "Synthesis of -Hydroxyaldehydes with Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions," Angew. Chem. Int. Ed. 2004, 43, 2420-2423, DOI: 10.1002/anie.200353546.
  98. Pidathala, C.; Hoang, L.; Vignola, N.; List, B. "Direct Catalytic Asymmetric Enolexo Aldolizations," Angew. Chem. Int. Ed. 2003, 42, 2785-2788, DOI: 10.1002/anie.200351266.
  99. Notz, W.; List, B. "Catalytic Asymmetric Synthesis of anti-1,2-Diols," J. Am. Chem. Soc. 2000, 122, 7386-7387, DOI: 10.1021/ja001460v.
  100. Cheong, P. H.-Y.; Legault, C. Y.; Um, J. M.; Çelebi-Ölçüm, N.; Houk, K. N. "Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities," Chem. Rev. 2011, 111, 5042-5137, DOI: 10.1021/cr100212h.
  101. List, B.; Lerner, R. A.; Barbas, C. F., III; "Proline-Catalyzed Direct Asymmetric Aldol Reactions," J. Am. Chem. Soc. 2000, 122, 2395-2396, DOI: 10.1021/ja994280y.
  102. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III; "Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions," J. Am. Chem. Soc. 2001, 123, 5260-5267, DOI: 10.1021/ja010037z.
  103. Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. " Kinetic and Stereochemical Evidence for the Involvement of Only One Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular Aldol Reactions," J. Am. Chem. Soc. 2003, 125, 16-17, DOI: 10.1021/ja028634o.
  104. List, B.; Hoang, L.; J. Martin, H. J. "New Mechanistic Studies on the Proline-Catalyzed Aldol Reaction," Proc. Nat. Acad. Sci. USA 2004, 101, 5839-5842, DOI: 10.1073/pnas.0307979101.
  105. Agami, C.; Puchot, C.; Sevestre, H. "Is the Mechanism of the Proline-Catalyzed Enantioselective Aldol Reaction Related to Biochemical Processes?," Tetrahedron Lett. 1986, 27, 1501-4150, DOI: 10.1016/S0040-4039(00)84297-5.
  106. Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B. "Nonlinear Effects in Asymmetric Synthesis. Examples in Asymmetric Oxidations and Aldolization Reactions," J. Am. Chem. Soc. 1986, 108, 2353-2357, DOI: 10.1021/ja00269a036.
  107. Jung, M. E. "A Review of Annulation," Tetrahedron 1976, 32, 3-31, DOI: 10.1016/0040-4020(76)80016-6.
  108. Rankin, K. N.; Gauld, J. W.; Boyd, R. J. "Density Functional Study of the Proline-Catalyzed Direct Aldol Reaction," J. Phys. Chem. A. 2002, 106, 5155-5159, DOI: 10.1021/jp020079p.
  109. Bahmanyar, S.; Houk, K. N. "Transition States of Amine-Catalyzed Aldol Reactions Involving Enamine Intermediates: Theoretical Studies of Mechanism, Reactivity, and Stereoselectivity," J. Am. Chem. Soc. 2001, 123, 11273-11283, DOI: 10.1021/ja011403h.
  110. Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. "Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions," J. Am. Chem. Soc. 2003, 125, 2475-2479, DOI: 10.1021/ja028812d.
  111. Allemann, C.; Um, J. M.; Houk, K. N. "Computational investigations of the stereoselectivities of proline-related catalysts for aldol reactions," J. Mol. Cat. A: Chem. 2010, 324, 31-38, DOI: 10.1016/j.molcata.2010.03.020.
  112. Cordova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W.-W. "Acyclic amino acid-catalyzed direct asymmetric aldol reactions: alanine, the simplest stereoselective organocatalyst," Chem. Commun. 2005, 3586-3588, DOI: 10.1039/B507968N.
  113. Bassan, A.; Zou, W.; Reyes, E.; Himo, F.; Córdova, A. "The Origin of Stereoselectivity in Primary Amino Acid Catalyzed Intermolecular Aldol Reactions," Angewandte Chemie International Edition 2005, 44, 7028-7032, DOI: 10.1002/anie.200502388.
  114. Shinisha, C. B.; Sunoj, R. B. "Bicyclic Proline Analogues as Organocatalysts for Stereoselective Aldol Reactions: an in silico DFT Study," Org. Biomol. Chem. 2007, 5, 1287-1294, DOI: 10.1039/b701688c.
  115. Lam, Y.-h.; Houk, K. N.; Scheffler, U.; Mahrwald, R. "Stereoselectivities of Histidine-Catalyzed Asymmetric Aldol Additions and Contrasts with Proline Catalysis: A Quantum Mechanical Analysis," J. Am. Chem. Soc. 2012, 134, 6286-6295, DOI: 10.1021/ja2118392.
  116. Seebach, D.; Beck, A. K.; Badine, D. M.; Limbach, M.; Eschenmoser, A.; Treasurywala, A. M.; Hobi, R.; Prikoszovich, W.; Linder, B. "Are Oxazolidinones Really Unproductive, Parasitic Species in Proline Catalysis? - Thoughts and Experiments Pointing to an Alternative View," Helv. Chim. Acta 2007, 90, 425-471, DOI: 10.1002/hlca.200790050.
  117. Sharma, A.; Sunoj, R. "Enamine versus Oxazolidinone: What Controls Stereoselectivity in Proline-Catalyzed Asymmetric Aldol Reactions?," Angew. Chem. Int. Ed. 2010, 49, 6373-6377, DOI: 10.1002/anie.201001588
  118. Bahmanyar, S.; Houk, K. N. "The Origin of Stereoselectivity in Proline-Catalyzed Intramolecular Aldol Reactions," J. Am. Chem. Soc. 2001, 123, 12911-12912, DOI: 10.1021/ja011714s.
  119. Clemente, F. R.; Houk, K. N. "Computational Evidence for the Enamine Mechanism of Intramolecular Aldol Reactions Catalyzed by Proline," Angew. Chem. Int. Ed. 2004, 43, 5766-5768, DOI: 10.1002/anie.200460916.
  120. Zhu, H.; Clemente, F. R.; Houk, K. N.; Meyer, M. P. "Rate Limiting Step Precedes C-C Bond Formation in the Archetypical Proline-Catalyzed Intramolecular Aldol Reaction," J. Am. Chem. Soc. 2009, 131, 1632-1633, DOI: 10.1021/ja806672y.
  121. Cheong, P. H.-Y.; Houk, K. N. "Origins and Predictions of Stereoselectivity in Intramolecular Aldol Reactions Catalyzed by Proline Derivatives," Synthesis 2005, 1533-1537, DOI: 10.1055/s-2005-865332.
  122. List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. "The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction: Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols," J. Am. Chem. Soc. 2002, 124, 827-833, DOI: 10.1021/ja0174231.
  123. Bahmanyar, S.; Houk, K. N. "Origins of Opposite Absolute Stereoselectivities in Proline-Catalyzed Direct Mannich and Aldol Reactions," Org. Lett. 2003, 5, 1249-1251, DOI: 10.1021/ol034198e.
  124. Parasuk, W.; Parasuk, V. "Theoretical Investigations on the Stereoselectivity of the Proline Catalyzed Mannich Reaction in DMSO," J. Org. Chem. 2008, 73, 9388-9392, DOI: 10.1021/jo801872w.
  125. Mitsumori, S.; Zhang, H.; Ha-YeonCheong, P.; Houk, K. N.; Tanaka, F.; Barbas, C. F. "Direct Asymmetric anti-Mannich-Type Reactions Catalyzed by a Designed Amino Acid," J. Am. Chem. Soc. 2006, 128, 1040-1041, DOI: 10.1021/ja056984f.
  126. Wheeler, S. E.; Moran, A.; Pieniazek, S. N.; Houk, K. N. "Accurate Reaction Enthalpies and Sources of Error in DFT Thermochemistry for Aldol, Mannich, and α-Aminoxylation Reactions," J. Phys. Chem. A 2009, 113, 10376-10384, DOI: 10.1021/jp9058565
  127. Singh, R.; Tsuneda, T.; Hirao, K. "An examination of density functionals on aldol, Mannich and α-aminoxylation reaction enthalpy calculations," Theor. Chem. Acc. 2011, 130, 153-160, DOI: 10.1007/s00214-011-0944-6.
  128. Dickerson, T. J.; Janda, K. D. "Aqueous Aldol Catalysis by a Nicotine Metabolite," J. Am. Chem. Soc. 2002, 124, 3220-3221, DOI: 10.1021/ja017774f.
  129. Dickerson, T. J.; Lovell, T.; Meijler, M. M.; Noodleman, L.; Janda, K. D. "Nornicotine Aqueous Aldol Reactions: Synthetic and Theoretical Investigations into the Origins of Catalysis," J. Org. Chem. 2004, 69, 6603-6609, DOI: 10.1021/jo048894j.
  130. Zhang, X.; Houk, K. N. "Acid/Base Catalysis by Pure Water: The Aldol Reaction," J. Org. Chem. 2005, 70, 9712-9716, DOI: 10.1021/jo0509455.
  131. Taylor, M. S.; Jacobsen, E. N. "Asymmetric Catalysis by Chiral Hydrogen-Bond Donors," Angew. Che, Int. Ed. 2006, 45, 1520-1543, DOI: 10.1002/anie.200503132.
  132. Doyle, A. G.; Jacobsen, E. N. "Small-Molecule H-Bond Donors in Asymmetric Catalysis," Chem. Rev. 2007, 107, 5713-5743, DOI: 10.1021/cr068373r.
  133. Uyeda, C.; Jacobsen, E. N. "Enantioselective Claisen Rearrangements with a Hydrogen-Bond Donor Catalyst," J. Am. Chem. Soc. 2008, 130, 9228-9229, DOI: 10.1021/ja803370x.
  134. Brown, A. R.; Uyeda, C.; Brotherton, C. A.; Jacobsen, E. N. "Enantioselective Thiourea-Catalyzed Intramolecular Cope-Type Hydroamination," J. Am. Chem. Soc. 2013, 135, 6747-6749, DOI: 10.1021/ja402893z.
  135. Uyeda, C.; Rötheli, A. R.; Jacobsen, E. N. "Catalytic Enantioselective Claisen Rearrangements of O-Allyl β-Ketoesters," Angew. Chem. Int. Ed. 2010, DOI: 10.1002/anie.201005183.
  136. Uyeda, C.; Jacobsen, E. N. "Transition-State Charge Stabilization through Multiple Non-covalent Interactions in the Guanidinium-Catalyzed Enantioselective Claisen Rearrangement," J. Am. Chem. Soc. 2011, 133, 5062-5075, DOI: 10.1021/ja110842s.