About the Book
Citations
Molecules
Chapter 3 Citations
- Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X. "Assessment
of Experimental Bond Dissociation Energies Using Composite ab Initio Methods
and Evaluation of the Performances of Density Functional Methods in the
Calculation of Bond Dissociation Energies," J. Chem. Inf. Comput. Sci. 2003,
43, 2005-2013, DOI: 10.1021/ci034033k.
-
Blanksby, S. J.; Ellison, G. B. "Bond
Dissociation Energies of Organic Molecules," Acc. Chem. Res. 2003, 36, 255-263, DOI: 10.1021/ar020230d.
-
Henry, D. J.; Parkinson, C. J.; Mayer, P. M.;
Radom, L. "Bond Dissociation Energies and Radical Stabilization Energies
Associated with Substituted Methyl Radicals," J. Phys. Chem. A 2001, 105, 6750-6756, DOI: 10.1021/jp010442c.
-
Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo,
Q.-X. "Homolytic C-H and N-H Bond Dissociation Energies of Strained
Organic Compounds," J. Org. Chem.
2004, 69, 3129-3138, DOI: 10.1021/jo035306d.
-
Menon, A. S.; Wood, G. P. F.; Moran, D.; Radom, L.
"Bond Dissociation Energies and Radical Stabilization Energies: An
Assessment of Contemporary Theoretical Procedures," J. Phys. Chem. A 2007, 111, 13638-13644, DOI: 10.1021/jp076521r.
-
Yao, X.-Q.; Hou, X.-J.; Jiao, H.; Xiang, H.-W.;
Li, Y.-W. "Accurate Calculations of Bond Dissociation Enthalpies with
Density Functional Methods," J.
Phys. Chem. A 2003, 107, 9991-9996, DOI: 10.1021/jp0361125.
-
Check, C. E.; Gilbert, T. M. "Progressive
Systematic Underestimation of Reaction Energies by the B3LYP Model as the
Number of C-C Bonds Increases: Why Organic Chemists Should Use Multiple DFT
Models for Calculations Involving Polycarbon Hydrocarbons," J. Org. Chem. 2005,
70, 9828-9834, DOI: 10.1021/jo051545k.
-
Redfern, P. C.; Zapol, P.; Curtiss, L. A.;
Raghavachari, K. "Assessment of Gaussian-3 and Density Functional Theories
for Enthalpies of Formation of C1-C16 Alkanes," J. Phys. Chem. A
2000, 104, 5850-5854, DOI: 10.1021/jp994429s.
-
Luo, Y.-R. Handbook
of Bond Dissociation Energies in Organic Compounds; CRC Press: New York,
2002.
-
Rüchardt, C. "Relations Between Structure
and Reactivity in Free-Radical Chemistry," Angew. Chem. Int. Ed. Engl. 1970,
9, 830-843, DOI: 10.1002/anie.197008301.
-
Izgorodina, E. I.; Coote, M. L.; Radom, L.
"Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A Surprising
Shortcoming of Density Functional Theory," J. Phys. Chem. A 2005, 109, 7558-7566, DOI: http://dx.doi.org/10.1021/jp052021r.
-
Coote, M. L.; Pross, A.; Radom, L. "Variable
Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu)," Org. Lett. 2003, 5, 4689-4692, DOI: http://dx.doi.org/10.1021/ol035860+.
-
Matsunaga, N.; Rogers, D. W.; Zavitsas, A. A.
"Pauling's Electronegativity Equation and a New Corollary Accurately
Predict Bond Dissociation Enthalpies and Enhance Current Understanding of the
Nature of the Chemical Bond," J.
Org. Chem. 2003, 68, 3158-3172, DOI: 10.1021/jo020650g.
-
Lias, S. G.; Bartmess, J. E.; Holmes, J. L.;
Levin, R. D.; Mallard, W. G. "Gas-Phase Ion and Neutral
Thermochemistry," J. Phys. Chem.
Ref. Data 1988, Suppl. 17.
-
Linstrom, P. J.; Mallard, W. G. "NIST
Chemistry WebBook, NIST Standard Reference Database Number 69," 2012, URL:
http://webbook.nist.gov/.
-
Kollmar, H. "The Stability of Alkyl Anions.
A Molecular Orbital Theoretical Study," J. Am. Chem. Soc. 1978, 100, 2665-2669, DOI: 10.1021/ja00477a016.
-
Chandrasekhar, J.; Andrade, J. G.; Schleyer, P.
v. R. "Efficient and Accurate Calculation of Anion Proton
Affinities," J. Am. Chem. Soc. 1981, 103, 5609-5612, DOI: 10.1021/ja00408a074.
-
Saunders, W. H., Jr. "Ab Initio and
Semi-Empirical Investigation of Gas-Phase Carbon Acidity," J. Phys. Org. Chem. 1994,
7, 268-271, DOI: 10.1002/poc.610070509.
- Burk, P.; Koppel, I. A.; Koppel, I.; Leito, I.; Travnikova, O. "Critical Test of Performance of B3LYP Functional for Prediction of Gas-Phase Acidities and Basicities," Chem. Phys. Lett. 2000, 323, 482-489, DOI: 10.1016/S0009-2614(00)00566-2.
-
Merrill, G. N.; Kass, S. R. "Calculated
Gas-Phase Acidities Using Density Functional Theory: Is It Reliable?," J. Phys. Chem. 1996, 100, 17465-17471,
DOI: 10.1021/jp961557x.
-
Ochterski, J. W.; G. A. Petersson, G. A.;
Montgomery, J. A., Jr. "A Complete Basis Set Model Chemistry. V.
Extensions to Six or More Heavy Atoms," J. Chem. Phys. 1996, 104, 2598-2619, DOI: 10.1063/1.470985.
-
Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B.
"A Comparison of Model Chemistries," J. Am. Chem. Soc. 1995, 117, 11299-11308, DOI: 10.1021/ja00150a030.
-
Topol, I. A.; Tawa, G. J.; Caldwell, R. A.;
Eissenstat, M. A.; Burt, S. K. "Acidity of Organic Molecules in the Gas
Phase and in Aqueous Solvent," J.
Phys. Chem. A 2000, 104, 9619-9624, DOI: 10.1021/jp001938h.
-
DePuy, C. H.; Gronert, S.; Barlow, S. E.;
Bierbaum, V. M.; Damrauer, R. "The Gas-Phase Acidities of the
Alkanes," J. Am. Chem. Soc. 1989, 111, 1968-1973, DOI: 10.1021/ja00188a003.
-
Luh, T.-Y.; Stock, L. M. "Kinetic Acidity of
Cubane," J. Am. Chem. Soc. 1974, 96, 3712-3713, DOI: 10.1021/ja00818a090.
-
Ritchie, J. P.; Bachrach, S. M. "Comparison
of the Calculated Acidity of Cubane with That of Other Strained and Unstrained
Hydrocarbons," J. Am. Chem. Soc.
1990, 112, 6514-6517, DOI: 10.1021/ja00174a010.
-
Hare, M.; Emrick, T.; Eaton, P. E.; Kass, S. R.
"Cubyl Anion Formation and an Experimental Determination of the Acidity
and C-H Bond Dissociation Energy of Cubane," J. Am. Chem. Soc. 1997, 119, 237-238, DOI: 10.1021/ja9627858.
-
Rayne, S.; Forest, K. "Gas-phase enthalpies
of formation, acidities, and strain energies of the [m,n]polyprismanes (m ≥ 2;
n = 3-8; m x n ≤ 16): a CBS-Q//B3, G4MP2, and G4 theoretical
study," Theor. Chem. Acc. 2010, 127, 697-709, DOI: 10.1007/s00214-010-0780-0.
-
Broadus, K. M.; Kass, S. R.; Osswald, T.;
Prinzbach, H. "Dodecahedryl Anion Formation and an Experimental
Determination of the Acidity and C-H Bond Dissociation Energy of
Dodecahedrane," J. Am. Chem. Soc.
2000, 122, 10964-10968, DOI: 10.1021/ja002588f.
-
Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass,
S. R. "Why Does Cyclopropene Have the Acidity of an Acetylene but the Bond
Energy of Methane?," J. Am. Chem.
Soc. 2003, 125, 11746-11750, DOI: 10.1021/ja035725s.
-
Manini, P.; Amrein, W.; Gramlich, V.; Diederich,
F. "Expanded Cubane: Synthesis of a Cage Compound with a C56 Core by
Acetylenic Scaffolding and Gas-Phase Transformations into Fullerenes," Angew. Chem. Int. Ed. 2002, 4339-4343, DOI: 10.1002/1521-3773(20021115)41:22<4339::AID-ANIE4339>3.0.CO;2-8.
-
Bachrach, S. M. "Structure, Deprotonation
Energy, and Cation Affinity of an Ethynyl-Expanded Cubane," J. Phys. Chem. A. 2003, 107, 4957-4961,
DOI: 10.1021/jp034406k.
-
Bachrach, S. M.; Demoin, D. W.
"Computational Studies of Ethynyl- and Diethynyl-Expanded Tetrahedranes,
Prismanes, Cubanes, and Adamantanes," J.
Org. Chem. 2006, 71, 5105-5116, DOI: 10.1021/jo060240i.
-
de Visser, S. P.; van der Horst, E.; de Koning,
L. J.; van der Hart, W. J.; Nibbering, N. M. M. "Characterization of
Isomeric C4H5- Anions in the Gas Phase; Theory
and Experiment," J. Mass. Spectrom.
1999, 34, 303-310, DOI: 10.1002/(SICI)1096-9888(199904)34:4<303::AID-JMS753>3.0.CO;2-C.
-
Siggel, M. R.; Thomas, T. D. "Why are
Organic Acids Stronger Acids than Organic Alcohols?," J. Am. Chem. Soc. 1986, 108, 4360-4363, DOI: 10.1021/ja00275a022.
-
Burk, P.; Schleyer, P. v. R. "Why are
Carboxylic Acids Stronger Acids than Alcohols? The Electrostatic Theory of
Siggel-Thomas Revisited," J. Mol.
Struct. (THEOCHEM) 2000, 505, 161-167, DOI: 10.1016/S0166-1280(99)00357-7.
-
Siggel, M. R. F.; Streitwieser, A. J.; Thomas, T.
D. "The Role of Resonance and Inductive Effects in the Acidity of
Carboxylic Acids," J. Am. Chem. Soc.
1988, 110, 8022-8028, DOI: 10.1021/ja00232a011.
-
Exner, O. "Why are Carboxylic Acids and
Phenols Stronger Acids than Alcohols?," J. Org. Chem. 1988, 53, 1810-1812, DOI: 10.1021/jo00243a042.
-
Dewar, M. J. S.; Krull, K. L. "Acidity of
Carboxylic Acids: Due to Delocalization or Induction?," J. Chem. Soc., Chem. Commun. 1990, 333-334, DOI: 10.1039/C39900000333.
-
Perrin, C. L. "Atomic Size Dependence of
Bader Electron Populations: Significance for Questions of Resonance
Stabilization," J. Am. Chem. Soc.
1991, 113, 2865-2868, DOI: 10.1021/ja00008a011.
-
Hiberty, P. C.; Byrman, C. P. "Role of π-Electron Delocalization in the
Enhanced Acidity of Carboxylic Acids and Enols Relative to Alcohols," J. Am. Chem. Soc. 1995, 117, 9875-9880,
DOI: 10.1021/ja00144a013.
-
Rablen, P. R. "Is the Acetate Anion
Stabilized by Resonance or Electrostatics? A Systematic Structural
Comparison," J. Am. Chem. Soc. 2000, 122, 357-368, DOI: 10.1021/ja9928475
-
Holt, J.; Karty, J. M. "Origin of the
Acidity Enhancement of Formic Acid over Methanol: Resonance versus Inductive
Effects," J. Am. Chem. Soc. 2003, 125, 2797-2803, DOI: 10.1021/ja020803h.
-
O'Hair, R. A. J.; Bowie, J. H.; Gronert, S.
"Gas phase acidities of the α-amino acids," Int. J. Mass
Spectrom. Ion Processes 1992, 117, 23-36, DOI: 10.1016/0168-1176(92)80083-D.
-
Jones, C. M.; Bernier, M.; Carson, E.; Colyer, K.
E.; Metz, R.; Pawlow, A.; Wischow, E. D.; Webb, I.; Andriole, E. J.; Poutsma,
J. C. "Gas-Phase Acidities of the 20 Protein Amino Acids," Int. J. Mass Spectrom. 2007, 267, 54-62, DOI: 10.1016/j.ijms.2007.02.018.
-
Tian, Z.; Pawlow, A.; Poutsma, J. C.; Kass, S. R.
"Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase
Acidity, H/D Exchange Experiments, and Computations on Cysteine and Its
Conjugate Base," J. Am. Chem. Soc.
2007, 129, 5403-5407, DOI: 10.1021/ja0666194.
-
Tian, Z.; Wang, X.-B.; Wang, L.-S.; Kass, S. R.
"Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase
Acidities, Photoelectron Spectra, and Computations on Tyrosine,
p-Hydroxybenzoic Acid, and Their Conjugate Bases," J. Am. Chem. Soc. 2009, 131, 1174-1181, DOI: 10.1021/ja807982k.
-
Smith, G. D.; Jaffe, R. L. "Quantum
Chemistry Study of Conformational Energies and Rotational Energy Barriers in
n-Alkanes," J. Phys. Chem. 1996, 100, 18718-18724, DOI: 10.1021/jp960413f.
-
Gruzman, D.; Karton, A.; Martin, J. M. L.
"Performance of Ab Initio and Density Functional Methods for
Conformational Equilibria of CnH2n+2 Alkane Isomers (n = 4-8)," J. Phys. Chem. A 2009, 113, 11974-11983,
DOI: 10.1021/jp903640h.
-
Allinger, N. L.; Fermann, J. T.; Allen, W. D.;
Schaefer Iii, H. F. "The torsional conformations of butane: Definitive
energetics from ab initio methods," J.
Chem. Phys 1997, 106, 5143-5150, DOI: 10.1063/1.473993.
-
Herrebout, W. A.; van der Veken, B. J.; Wang, A.;
Durig, J. R. "Enthalpy Difference between Conformers of n-Butane and the
Potential Function Governing Conformational Interchange," J. Phys. Chem. 1995, 99, 578-585, DOI: 10.1021/j100002a020.
-
Balabin, R. M. "Enthalpy Difference between
Conformations of Normal Alkanes: Raman Spectroscopy Study of n-Pentane and n-Butane," J. Phys.
Chem. A 2009, 113, 1012-1019, DOI: 10.1021/jp809639s.
-
Martin, J. M. L.; de Oliveira, G. "Towards Standard
Methods for Benchmark Quality ab Initio Thermochemistry - W1 and W2
Theory," J. Chem. Phys. 1999, 111, 1843-1856, DOI: 10.1063/1.479454.
-
Parthiban, S.; Martin, J. M. L. "Assessment
of W1 and W2 theories for the computation of electron affinities, ionization
potentials, heats of formation, and proton affinities," J. Chem. Phys. 2001, 114, 6014-6029,
DOI: 10.1063/1.1356014.
-
Balabin, R. M. "Enthalpy difference between
conformations of normal alkanes: effects of basis set and chain length on
intramolecular basis set superposition error," Mol. Phys. 2011, 109, 943-953, DOI: 10.1080/00268976.2011.558858.
-
Asturiol, D.; Duran, M.; Salvador, P.
"Intramolecular basis set superposition error effects on the planarity of
benzene and other aromatic molecules: A solution to the problem," J. Chem. Phys. 2008, 128, 144108, DOI: 10.1063/1.2902974.
-
Csázár, A. G. "Conformers of Gaseous α-Alanine," J. Phys. Chem. 1996, 100, 3541-3551,
DOI: 10.1021/jp9533640.
-
Godfrey, P. D.; Firth, S.; Hatherley, L. D.;
Brown, R. D.; Pierlot, A. P. "Millimeter-wave spectroscopy of
biomolecules: alanine," J. Am. Chem.
Soc. 1993, 115, 9687-9691, DOI: 10.1021/ja00074a039.
-
Jaeger, H. M.; Schaefer, H. F.; Demaison, J.;
Császár, A. G.; Allen, W. D. "Lowest-Lying Conformers of Alanine: Pushing
Theory to Ascertain Precise Energetics and Semiexperimental Re Structures," J. Chem. Theory Comput. 2010, 6, 3066-3078, DOI: 10.1021/ct1000236.
-
Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J.
L. "The Gas-Phase Structure of Alanine," J. Am. Chem. Soc. 2004, 126, 11675-11683, DOI: 10.1021/ja048317c.
-
Gronert, S.; O'Hair, R. A. J. "Ab Initio
Studies of Amino Acid Conformations. 1. The Conformers of Alanine, Serine, and
Cysteine," J. Am. Chem. Soc. 1995, 117, 2071-2081, DOI: 10.1021/ja00112a022.
-
Dobrowolski, J. C.; Rode, J. E.; Sadlej, J.
"Cysteine conformations revisited," J. Mol. Struct. THEOCHEM 2007,
810, 129-134, DOI: 10.1016/j.theochem.2007.02.011.
-
Sanz, M. E.; Blanco, S.; López, J. C.; Alonso, J.
L. "Rotational Probes of Six Conformers of Neutral Cysteine," Angew. Chem. Int. Ed. 2008, 47, 6216-6220, DOI: 10.1002/anie.200801337.
-
Wilke, J. J.; Lind, M. C.; Schaefer, H. F.;
Császáá;r, A. G.; Allen, W. D. "Conformers of Gaseous Cysteine," J. Chem. Theor. Comput. 2009, 5, 1511-1523, DOI: 10.1021/ct900005c.
-
Grimme, S. "Seemingly Simple
Stereoelectronic Effects in Alkane Isomers and the Implications for Kohn-Sham
Density Functional Theory," Angew.
Chem. Int. Ed. 2006, 45, 4460-4464, DOI: 10.1002/anie.200600448.
-
NIST "NIST Chemistry WebBook," 2005,
URL: http://webbook.nist.gov/.
-
Zhao, Y.; Truhlar, D. G. "A Density
Functional That Accounts for Medium-Range Correlation Energies in Organic
Chemistry," Org. Lett. 2006, 8, 5753-5755, DOI: 10.1021/ol062318n.
-
Schreiner, P. R.; Fokin, A. A.; Pascal, R. A.;
deMeijere, A. "Many Density Functional Theory Approaches Fail To Give
Reliable Large Hydrocarbon Isomer Energy Differences," Org. Lett. 2006, 8, 3635-3638, DOI: 10.1021/ol0610486
.
-
Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v.
R. "Systematic Errors in Computed Alkane Energies Using B3LYP and Other
Popular DFT Functionals," Org. Lett.
2006, 8, 3631-3634, DOI: 10.1021/ol061016i.
-
Wodrich, M. D.; Corminboeuf, C.; Schreiner, P.
R.; Fokin, A. A.; Schleyer, P. v. R. "How Accurate Are DFT Treatments of
Organic Energies?," Org. Lett. 2007, 9, 1851-1854, DOI: 10.1021/ol070354w.
-
Pieniazek, S. N.; Clemente, F. R.; Houk, K. N.
"Sources of Error in DFT Computations of C-C Bond Formation
Thermochemistries: π → σ Transformations and Error Cancellation by DFT Methods," Angew. Chem. Int. Ed. 2008, 47, 7746-7749, DOI: 10.1002/anie.200801843.
-
Brittain, D. R. B.; Lin, C. Y.; Gilbert, A. T.
B.; Izgorodina, E. I.; Gill, P. M. W.; Coote, M. L. "The role of exchange
in systematic DFT errors for some organic reactions," Phys. Chem. Chem. Phys. 2009,
DOI: 10.1039/b818412g.
-
Song, J.-W.; Tsuneda, T.; Sato, T.; Hirao, K.
"Calculations of Alkane Energies Using Long-Range Corrected DFT Combined
with Intramolecular van der Waals Correlation," Org. Lett. 2010, 12, 1440�1443, DOI: 10.1021/ol100082z.
-
Sato, T.; Nakai, H. "Density functional method
including weak interactions: Dispersion coefficients based on the local
response approximation," J. Chem.
Phys 2009, 131, 224104-224112, DOI: 10.1063/1.3269802.
-
Grimme, S. "n-Alkane Isodesmic Reaction
Energy Errors in Density Functional Theory Are Due to Electron Correlation
Effects," Org. Lett. 2010, 12, 4670-4673, DOI: 10.1021/ol1016417.
-
Krieg, H.; Grimme, S. "Thermochemical
benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder
is not reversed!," Mol. Phys. 2010, 108, 2655-2666, DOI: 10.1080/00268976.2010.519729.
-
Zhao, Y.; Schultz, N. E.; Truhlar, D. G.
"Design of Density Functionals by Combining the Method of Constraint
Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics,
and Noncovalent Interactions," J.
Chem. Theory Comput. 2006, 2, 364-382, DOI: 10.1021/ct0502763.
-
Zhao, Y.; Truhlar, D. "The M06 suite of density
functionals for main group thermochemistry, thermochemical kinetics,
noncovalent interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and 12 other
functionals," Theor. Chem. Acc. 2008, 120, 215-241, DOI: 10.1007/s00214-007-0310-x.
-
Mardirossian, N.; Parkhill, J. A.; Head-Gordon,
M. "Benchmark results for empirical post-GGA functionals: Difficult
exchange problems and independent tests," Phys. Chem. Chem. Phys. 2011,
13, 19325-19337, DOI: 10.1039/C1CP21635J.
-
Song, J.-W.; Tsuneda, T.; Sato, T.; Hirao, K.
"An examination of density functional theories on isomerization energy
calculations of organic molecules," Theor.
Chem. Acc. 2011, 130, 851-857, DOI: 10.1007/s00214-011-0997-6.
-
Chai, J.-D.; Head-Gordon, M. "Systematic
optimization of long-range corrected hybrid density functionals," J. Chem. Phys 2008, 128, 084106-084115,
DOI: 10.1063/1.2834918.
-
McBride, J. M. "The hexaphenylethane
riddle," Tetrahedron 1974, 30, 2009-2022, DOI: 10.1016/s0040-4020(01)97332-6.
-
Selwood, P. W.; Dobres, R. M. "The
Diamagnetic Correction for Free Radicals," J. Am. Chem. Soc. 1950, 72, 3860-3863, DOI: 10.1021/ja01165a007.
-
Kahr, B.; Van Engen, D.; Mislow, K. "Length
of the ethane bond in hexaphenylethane and its derivatives," J. Am. Chem. Soc. 1986, 108, 8305-8307,
DOI: 10.1021/ja00286a053.
-
Grimme, S.; Schreiner, P. R. "Steric
Crowding Can Stabilize a Labile Molecule: Solving the Hexaphenylethane
Riddle," Angew. Chem. Int. Ed. 2011, 50, 12639-12642, DOI: 10.1002/anie.201103615.
-
Schreiner, P. R.; Chernish, L. V.; Gunchenko, P.
A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.;
Carlson, R. M. K.; Fokin, A. A. "Overcoming lability of extremely long
alkane carbon-carbon bonds through dispersion forces," Nature 2011, 477, 308-311, DOI: 10.1038/nature10367.
-
Fokin, A. A.; Chernish, L. V.; Gunchenko, P. A.;
Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M.
K.; Schreiner, P. R. "Stable Alkanes Containing Very Long Carbon-Carbon
Bonds," J. Am. Chem. Soc. 2012, 134, 13641-13650, DOI: 10.1021/ja302258q.
-
Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and
Structure; Wiley: New York, 2001.
-
Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds;
2nd ed.; Chapman and Hall: London, 1986.
-
Benson, S. W.; Cruickshank, F. R.; Golden, D. M.;
Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R.
"Additivity Rules for the Estimation of Thermochemical Properties," Chem. Rev. 1969, 69, 279-324, DOI: 10.1021/cr60259a002
.
-
Benson, S. W. Thermochemical
Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters;
2nd ed.; Wiley: New York, 1976.
-
Wiberg, K. B. "Group Equivalents for
Converting ab initio Energies to Enthalpies of Formation," J. Comp. Chem. 1984, 5, 197-199, DOI: 10.1002/jcc.540050212.
-
Ibrahim, M. R.; Schleyer, P. v. R. "Atom
Equivalents for Relating ab initio Energies to Enthalpies of Formation," J. Comp. Chem. 1985, 6, 157-167, DOI: 10.1002/jcc.540060302.
-
Cioslowski, J.; Liu, G.; Piskorz, P.
"Computationally Inexpensive Theoretical Thermochemistry," J. Phys. Chem. A 1998, 102, 9890-9900,
DOI: 10.1021/jp982024m.
-
Guthrie, J. P. "Heats of Formation from DFT
Calculations: An Examination of Several Parameterizations," J. Phys. Chem. A 2001, 105, 9196-9202,
DOI: 10.1021/jp010355k.
-
Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople,
J. A. "Molecular orbital theory of the electronic structure of organic
compounds. V. Molecular theory of bond separation," J. Am. Chem. Soc. 1970, 92, 4796-4801, DOI: 10.1021/ja00719a006.
-
George, P.; Trachtman, M.; Bock, C. W.; Brett, A.
M. "An alternative approach to the problem of assessing destabilization
energies (strain energies) in cyclic hydrocarbons," Tetrahedron 1976, 32, 317-323, DOI: 10.1016/0040-4020(76)80043-9.
-
George, P.; Trachtman, M.; Brett, A. M.; Bock, C.
W. "Comparison of various isodesmic and homodesmotic reaction heats with
values derived from published ab initio molecular orbital calculations," J. Chem. Soc., Perkin Trans. 2 1977, 1036-1047, DOI: 10.1039/P29770001036.
-
Bachrach, S. M. "The Group Equivalent
Reaction: An Improved Method for Determining Ring Strain Energy," J. Chem. Ed. 1990,
67, 907-908, DOI: 10.1021/ed067p907.
-
Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.;
Allen, W. D. "A Hierarchy of Homodesmotic Reactions for
Thermochemistry," J. Am. Chem. Soc.
2009, 131, 2547-2560, DOI: 10.1021/ja805843n.
-
Boatz, J. A.; Gordon, M. S.; Hilderbrandt, R. L.
"Structure and Bonding in Cycloalkanes and Monosilacycloalkanes," J. Am. Chem. Soc. 1988, 110, 352-358, DOI: 10.1021/ja00210a005.
-
Alcamí, M.; Mó, O.; Yáñez, M. "G2 ab Initio
Calculations on Three-Membered Rings: Role of Hydrogen Atoms," J. Comp. Chem. 1998, 19, 1072-1086, DOI:
10.1002/(SICI)1096-987X(19980715)19:9<1072::AID-JCC8>3.0.CO;2-N.
-
Cremer, D. "Pros and Cons of σ-Aromaticity," Tetrahedron 1988, 44, 7427-7454, DOI:
10.1016/S0040-4020(01)86238-4.
-
Cremer, D.; Gauss, J. "Theoretical
Determination of Molecular Structure and Conformation. 20. Reevaluation of the
Strain Energies of Cyclopropane and Cyclobutane - CC and CH Bond Energies, 1,3
Interactions, and σ-Aromaticity," J. Am. Chem.
Soc. 1986, 108, 7467-7477, DOI: 10.1021/ja00284a004.
-
Baeyer, A. v. "Über
Polyacetylenverbindungen," Chem.
Ber. 1885, 18, 2269-2281.
-
Huisgen, R. "Adolf von Baeyer's Scientific
Achievements - a Legacy," Angew. Chem. Int. Ed. Engl. 1986,
25, 297-311, DOI: 10.1002/anie.198602973.
-
Snyder, R. G.; Schachtschneider, J. H. "A
Valence Force Field for Saturated Hydrocarbons," Spectrochim. Acta 1965, 21, 169-195, DOI: 10.1016/0371-1951(65)80115-1.
-
Walsh, A. D. "Structures of Ethylene Oxide,
Cyclopropane, and Related Molecules," Trans.
Faraday Soc. 1949, 45, 179-190, DOI: 10.1039/TF9494500179
.
-
Bader, R. F. W. Atoms in Molecules - A Quantum Theory; Oxford University Press:
Oxford, 1990.
-
Pitzer, K. S. "Strain Energies of Cyclic
Hydrocarbons," Science 1945, 101, 672, DOI: 10.1126/science.101.2635.672.
-
Dunitz, J. D.; Schomaker, V. "The Molecular
Structure of Cyclobutane," J. Chem.
Phys. 1952, 20, 1703-1707, DOI: 10.1063/1.1700271.
-
Bauld, N. L.; Cessac, J.; Holloway, R. L.
"1,3(Nonbonded) carbon/carbon interactions. The common cause of ring
strain, puckering, and inward methylene rocking in cyclobutane and of vertical
nonclassical stabilization, pyramidalization, puckering, and outward methylene
rocking in the cyclobutyl cation," J.
Am. Chem. Soc. 1977, 99, 8140-8144, DOI: 10.1021/ja00467a003.
-
Coulson, C. A.; Moffitt, W. E. "The
Properties of Certain Strained Hydrocarbons," Phil. Mag. 1949, 40, 1-35.
-
Baghal-Vayjooee, M. H.; Benson, S. W.
"Kinetics and thermochemistry of the reaction atomic chlorine +
cyclopropane .dblarw. hydrochloric acid + cyclopropyl. Heat of formation of the
cyclopropyl radical," J. Am. Chem.
Soc. 1979, 101, 2838-2840, DOI: 10.1021/ja00505a005.
-
Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.;
Gutman, D.; Krasnoperov, L. N. "Kinetics and Thermochemistry of R + HBr
.dblarw. RH + Br Reactions: Determinations of the Heat of Formation of C2H5,
i-C3H7, sec-C4H9 and t-C4H9," J. Phys. Chem. 1992, 96, 9847-9855, DOI:
>10.1021/j100203a050.
-
Exner, K.; Schleyer, P. v. R. "Theoretical
Bond Energies: A Critical Evaluation," J.
Phys. Chem. A. 2001, 105, 3407-3416, DOI: 10.1021/jp004193o.
-
Grimme, S. "Theoretical Bond and Strain
Energies of Molecules Derived from Properties of the Charge Density at Bond
Critical Points," J. Am. Chem. Soc.
1996, 118, 1529-1534, DOI: 10.1021/ja9532751.
-
Johnson, W. T. G.; Borden, W. T. "Why Are
Methylenecyclopropane and 1-Methylcylopropene More "Strained" than
Methylcyclopropane?," J. Am. Chem.
Soc 1997, 119, 5930-5933, DOI: 10.1021/ja9638061.
-
Bach, R. D.; Dmitrenko, O. "The Effect of
Substitutents on the Strain Energies of Small Ring Compounds," J. Org. Chem. 2002, 67, 2588-2599, DOI:
10.1021/jo016241m.
-
Bach, R. D.; Dmitrenko, O. "Strain Energy
of Small Ring Hydrocarbons. Influence of C-H Bond Dissociation Energies," J. Am. Chem. Soc. 2004, 126, 4444-4452,
DOI: 10.1021/ja036309a.
-
Dewar, M. J. S. "σ-Conjugation and σ-Aromaticity," Bull. Soc. Chim.
Belg. 1979, 88, 957-967.
-
Dewar, M. J. S. "Chemical Implications of σ-Conjugation," J. Am. Chem. Soc. 1984, 106, 669-682, DOI: 10.1021/ja00315a036.
-
Kraka, E.; Cremer, D. "Theoretical
determination of molecular structure and conformation. 15. Three-membered
rings: bent bonds, ring strain, and surface delocalization," J. Am. Chem. Soc. 1985, 107, 3800-3810,
DOI: 10.1021/ja00299a009.
-
Moran, D.; Manoharan, M.; Heine, T.; Schleyer,
P. v. R. "σ-Antiaromaticity in Cyclobutane, Cubane, and Other Molecules with
Saturated Four-Membered Rings," Org.
Lett. 2003, 5, 23-26, DOI: 10.1021/ol027159w.
-
Fowler, P. W.; Baker, J.; Mark Lillington, M.
"The Ring Current in Cyclopropane " Theor. Chem. Acta 2007, 118, 123-127, DOI: 10.1007/s00214-007-0253-2.
-
Schleyer, P. v. R.; Jiao, H. "What is
Aromaticity?," Pure. Appl. Chem.
1996, 68, 209-218, DOI: 10.1351/pac199668020209.
-
Krygowski, T. M.; Cyrañski, M. K.; Czarnocki,
Z.; Häfelinger, G.; Katritzky, A. R. "Aromaticity: a Theoretical Concept
of Immense Practical Importance," Tetrahedron
2000, 56, 1783-1796, DOI: 10.1016/S0040-4020(99)00979-5.
-
Stanger, A. "What is... aromaticity: a
critique of the concept of aromaticity-can it really be defined?," Chem. Commun. 2009, 1939-1947, DOI: 10.1039/B816811C.
-
Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y.
Aromaticity and Antiaromaticity:
Electronic and Structural Aspects; John Wiley & Sons: New York, 1994.
-
Schleyer, P. v. R. "Aromaticity," Chem Rev. 2001, 101, 1115-1566,
DOI: 10.1021/cr0103221.
-
Cyranski, M. K. "Energetic Aspects of
Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating
Aromatic Stabilization Energies," Chem.
Rev. 2005, 105, 3773 - 3811, DOI: 10.1021/cr0300845.
-
Cyranski, M. K.; Schleyer, P. v. R.; Krygowski,
T. M.; Jiao, H.; Hohlneicher, G. "Facts and Artifacts about Aromatic
Stability Estimation," Tetrahedron
2003, 59, 1657-1665, DOI: 10.1016/S0040-4020(03)00137-6.
-
Hedberg, L.; Hedberg, K.; Cheng, P.-C.; Scott,
L. T. "Gas-Phase Molecular Structure of Corannulene, C20H10. An
Electron-Diffraction Study Augmented by ab Initio and Normal Coordinate
Calculations," J. Phys. Chem. A 2000, 104, 7689-7694, DOI: 10.1021/jp0015527.
-
Dobrowolski, M. A.; Ciesielski, A.; Cyranski, M.
K. "On the aromatic stabilization of corannulene and coronene," Phys. Chem. Chem. Phys. 2011, 13, 20557-20563, DOI: 10.1039/C1CP21994D.
-
Choi, C. H.; Kertesz, M. "Bond Length
Alternation and Aromaticity in Large Annulenes," J. Chem. Phys. 1998, 108, 6681-6688, DOI: 10.102110.1063/1.476083.
-
Aromaticity,
Pseudo-aromaticiy, Anti-aromaticity, Proceedings of an International Symposium;
Bergmann, E. D.; Pullman, B., Eds.; Israel Academy of Sciences and Humanities:
Jerusalem, 1971; Vol. p. 33 see the following exchange:
E. Heilbronner: "Now could you point out a
molecule, except benzene, which classifies as 'aromatic'?"
B. Binsch: "Benzene is a perfect example!"
E. Heilbronner: "Name a second one."
B. Binsch: "It is, of course, a question of
degree."
-
Katritzky, A. R.; Barczynski, P.; Musumarra, G.;
Pisano, D.; Szafran, M. "Aromaticity as a quantitative concept. 1. A
statistical demonstration of the orthogonality of classical and magnetic
aromaticity in five- and six-membered heterocycles," J. Am. Chem. Soc. 1989, 111, 7-15, DOI: 10.1021/ja00183a002.
-
Jug, K.; Koester, A. M. "Aromaticity as a
Multi-Dimensional Phenomenon," J.
Phys. Org. Chem. 1991, 4, 163-169, DOI: 10.1002/poc.610040307.
-
Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.;
Goldfuss, B. "Aromaticity and Antiaromaticity in Five-Membered C4H4X Ring
Systems: Classical and Magnetic Concepts May Not Be Orthogonal," Angew. Chem. Int. Ed. Engl. 1995, 34, 337-340, DOI: 10.1002/anie.199503371.
-
Katritzky, A. R.; Karelson, M.; Sild, S.;
Krygowski, T. M.; Jug, K. "Aromaticity as a Quantitative Concept. 7.
Aromaticity Reaffirmed as a Multidimensional Characteristic," J. Org. Chem. 1998, 63, 5228-5231, DOI:
10.1021/jo970939b.
-
Cyranski, M. K.; Krygowski, T. M.; Katritzky, A.
R.; Schleyer, P. v. R. "To What Extent Can Aromaticity Be Defined
Uniquely?," J. Org. Chem. 2002, 67, 1333-1338, DOI: 10.1021/jo016255s.
-
Moran, D.; Simmonett, A. C.; Leach, F. E.;
Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F., III "Popular
Theoretical Methods Predict Benzene and Arenes To Be Nonplanar," J. Am. Chem. Soc.
2006, 128, 9342-9343, DOI: 10.1021/ja0630285.
-
Baldridge, K. K.; Siegel, J. S.
"Stabilization of Benzene Versus Oligoacetylenes: Not Another Scale for
Aromaticity," J. Phys. Org. Chem.
2004, 17, 740-742, DOI: 10.1002/poc.819.
-
Roberts, J. D.; Streitwieser, A. J.; Regan, C.
M. "Small-Ring Compounds. X. Molecular Orbital Calculations of Properties
of Some Small-Ring Hydrocarbons and Free Radicals," J. Am. Chem. Soc. 1952, 74, 4579-4582, DOI: 10.1021/ja01138a038.
-
Schaad, L. J.; Hess, B. A., Jr. "Dewar
Resonance Energy," Chem. Rev. 2001, 101, 1465-1476, DOI: 10.1021/cr9903609.
-
Pauling, L. The
Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.
-
Wheland, G. W. The Theory of Resonance; J. Wiley: New York, 1944.
-
Mo, Y.; Schleyer, P. v. R. "An Energetic
Measure of Aromaticity and Antiaromaticity Based on the Pauling-Wheland
Resonance Energies," Chem. Eur. J.
2006, 12, 2009-2020, DOI: 10.1002/chem.200500376.
-
Dewar, M. J. S.; De Llano, C. "Ground
States of Conjugated Molecules. XI. Improved Treatment of Hydrocarbons," J. Am. Chem. Soc. 1969, 91, 789-795, DOI: 10.1021/ja01032a001.
-
Schleyer, P. v. R.; Manoharan, M.; Jiao, H.;
Stahl, F. "The Acenes: Is There a Relationship between Aromatic
Stabilization and Reactivity?," Org.
Lett. 2001, 3, 3643-3646, DOI: 10.1021/ol016553b.
-
Hess, B. A., Jr.; Schaad, L. J. "Ab Initio
Calculation of Resonance Energies. Benzene and Cyclobutadiene," J. Am. Chem. Soc. 1983, 105, 7500-7505,
DOI: 10.1021/ja00364a600.
-
Schleyer, P. v. R.; Puhlhofer, F.
"Recommendations for the Evaluation of Aromatic Stabilization
Energies," Org. Lett. 2002, 4, 2873-2876, DOI: 10.1021/ol0261332.
-
Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R.
v. E.; Malkin, V. G.; Malkina, O. "An Evaluation of the Aromaticity of
Inorganic Rings: Refined Evidence from Magnetic Properties," J. Am. Chem. Soc. 1997, 119, 12669-12670-,
DOI: 10.1021/ja9719135.
-
Gomes, J. A. N. F.; Mallion, R. B.
"Aromaticity and Ring Currents," Chem.
Rev. 2001, 101, 1349 - 1384, DOI: 10.1021/cr990323h.
-
Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L.
"Diamagnetic Susceptibility Exaltation in Hydrocarbons," J. Am. Chem. Soc. 1969, 91, 1991-1998, DOI:
10.1021/ja01036a022.
-
Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Nonbenzenoid Aromatics; Snyder, J. P.,
Ed.; Academic Press: New York, 1971; Vol. 2, p 167-206.
-
Jackman, L. M.; Sondheimer, F.; Amiel, Y.;
Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A. "The Nuclear
Magnetic Resonance Spectroscopy of a Series of Annulenes and
Dehydro-annulenes," J. Am. Chem.
Soc. 1962, 84, 4307-4312, DOI: 10.1021/ja00881a022.
-
Stevenson, C. D.; Kurth, T. L. "Isotopic
Perturbations in Aromatic Character and New Closely Related Conformers Found in
[16]- and [18]Annulene," J. Am.
Chem. Soc. 2000, 122, 722-723, DOI: 10.1021/ja993604f.
-
Wannere, C. S.; Corminboeuf, C.; Allen, W. D.;
Schaefer, H. F., III; Schleyer, P. v. R. "Downfield Proton Chemical Shifts
Are Not Reliable Aromaticity Indicators," Org. Lett. 2005, 7, 1457-1460, DOI: 10.1021/ol050118q.
-
Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini,
A.; Viglione, R. G.; Ferraro, M. B.; Zanasi, R.; Lazzeretti, P. "Why
Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators,"
Org. Lett. 2005, 7, 3457-3460, DOI: 10.1021/ol051103v.
-
Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.;
Jiao, H.; Hommes, N. J. R. v. E. "Nucleus-Independent Chemical Shifts: A
Simple and Efficient Aromaticity Probe," J. Am. Chem. Soc. 1996, 118, 6317-6318, DOI: 10.1021/ja960582d.
-
Jiao, H.; Schleyer, P. v. R.; Mo, Y.;
McAllister, M. A.; Tidwell, T. T. "Magnetic Evidence for the Aromaticity
and Antiaromaticity of Charged Fluorenyl, Indenyl, and Cyclopentadienyl
Systems," J. Am. Chem. Soc. 1997, 119, 7075-7083, DOI: 10.1021/ja970380x.
-
Williams, R. V.; Armantrout, J. R.; Twamley, B.;
Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S. "A Theoretical and
Experimental Scale of Aromaticity. The First Nucleus-Independent Chemical
Shifts (NICS) Study of the Dimethyldihydropyrene Nucleus," J. Am. Chem. Soc. 2002, 124, 13495-13505,
DOI: 10.1021/ja020595t.
-
Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.;
Kiran, B.; Jiao, H.; Puchta, R.; van Eikema Hommes, N. J. R. "Dissected
Nucleus-Independent Chemical Shift Analysis of -Aromaticity and
Antiaromaticity," Org. Lett. 2001, 3, 2465-2468, DOI: 10.1021/ol016217v.
-
Stanger, A. "Nucleus-Independent Chemical
Shifts (NICS): Distance Dependence and Revised Criteria for Aromaticity and
Antiaromaticity," J. Org. Chem. 2006, 71, 883-893, DOI: 10.1021/jo051746o.
-
Klod, S.; Kleinpeter, E. "Ab initio
calculation of the anisotropy effect of multiple bonds and the ring current
effect of arenes - application in conformational and configurational
analysis," Chem. Soc., Perkin Trans.
2 2001, 1893-1898, DOI: 10.1039/b009809o.
-
Pople , J. A. "Proton Magnetic Resonance of
Hydrocarbons," J. Chem. Phys. 1956, 24, 1111, DOI: 10.1063/1.1742701.
-
Viglione, R. G.; Zanasi, R.; Lazzeretti, P.
"Are Ring Currents Still Useful to Rationalize the Benzene Proton Magnetic
Shielding?," Org. Lett. 2004, 6, 2265-2267, DOI: 10.1021/ol049200w.
-
Fallah-Bagher-Shaidaei, H.; Wannere, C. S.;
Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. "Which NICS Aromaticity
Index for Planar π Rings Is Best?," Org. Lett.
2006, 8, 863-866, DOI: 10.1021/ol0529546.
-
Herges, R.; Jiao, H.; Schleyer, P. v. R.
"Magnetic Properties of Aromatic Transition States: The Diels-Alder
Reactions," Angew. Chem. Int. Ed.
Engl. 1994, 33, 1376-1378, DOI: 10.1002/anie.199413761.
-
Jiao, H.; Schleyer, P. v. R. "The Cope
Rearrangement Transition Structure is not Diradicaloid, but is it
Aromatic?," Angew. Chem. Int. Ed.
Engl. 1995, 34, 334-337, DOI: 10.1002/anie.199503341.
-
Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.;
Varela-Varela, S. M.; Pena-Gallego, A.; Hermida-Ramon, J. M. "Are
Electrocyclization Reactions of (3Z)-1,3,5-Hexatrienone and Nitrogen
Derivatives Pseudopericyclic? A DFT Study," J. Org. Chem. 2005, 70, 3921-3928, DOI: 10.1021/jo0477695.
-
Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S.
"Hückel and Möbius Aromaticity and Trimerous Transition State Behaviour in
the Pericyclic Reactions of [10], [14], [16] and [18]Annulenes," J. Chem. Soc., Perkin Trans. 2 2000, 1415-1417, DOI: 10.1039/b002082f.
-
Levy, A.; Rakowitz, A.; Mills, N. S.
"Dications of Fluorenylidenes. The Effect of Substituent Electronegativity
and Position on the Antiaromaticity of Substituted Tetrabenzo[5.5]fulvalene
Dications," J. Org. Chem. 2003, 68, 3990-3998, DOI: 10.1021/jo026924h.
-
Mills, N. S.; Levy, A.; Plummer, B. F.
"Antiaromaticity in Fluorenylidene Dications. Experimental and Theoretical
Evidence for the Relationship between the HOMO/LUMO Gap and
Antiaromaticity," J. Org. Chem. 2004, 69, 6623-6633, DOI: 10.1021/jo0499266.
-
Piekarski, A. M.; Mills, N. S.; Yousef, A.
"Dianion and Dication of Tetrabenzo[5.7]fulvalene. Greater Antiaromaticity
than Aromaticity in Comparable Systems," J. Am. Chem. Soc. 2008, 130, 14883-14890, DOI: 10.1021/ja8042323.
-
Dinadayalane, T. C.; Deepa, S.; Reddy, A. S.;
Sastry, G. N. "Density Functional Theory Study on the Effect of
Substitution and Ring Annelation to the Rim of Corannulene," J. Org. Chem. 2004, 69, 8111-8114, DOI:
10.1021/jo048850a.
-
Schulman, J. M.; Disch, R. L. "Properties
of Phenylene-Based Hydrocarbon Bowls and Archimedene," J. Phys. Chem. A 2005, 109, 6947-6952,
DOI: 10.1021/jp058088w.
-
Kavitha, K.; Manoharan, M.; Venuvanalingam, P.
"1,3-Dipolar Reactions Involving Corannulene: How Does Its Rim and Spoke
Addition Vary?," J. Org. Chem. 2005, 70, 2528-2536, DOI: 10.1021/jo0480693.
-
Wu, J. I.; Fernández, I.; Mo, Y.; Schleyer, P.
v. R. "Why Cyclooctatetraene Is Highly Stabilized: The Importance of
"Two-Way" (Double) Hyperconjugation," J.
Chem. Theor. Comput. 2012, 8, 1280-1287, DOI: 10.1021/ct3000553.
-
Nishinaga, T.; Uto, T.; Inoue, R.; Matsuura, A.;
Treitel, N.; Rabinovitz, M.; Komatsu, K. "Antiaromaticity and Reactivity
of a Planar Cyclooctatetraene Fully Annelated with Bicyclo[2.1.1]hexane
Units," Chem. Eur. J. 2008, 14, 2067-2074, DOI: 10.1002/chem.200701405.
-
Ohmae, T.; Nishinaga, T.; Wu, M.; Iyoda, M.
"Cyclic Tetrathiophenes Planarized by Silicon and Sulfur Bridges Bearing
Antiaromatic Cyclooctatetraene Core: Syntheses, Structures, and
Properties," J. Am. Chem. Soc. 2009, 132, 1066-1074, DOI: 10.1021/ja908161r.
-
Masamune, S.; Hojo, K.; Hojo, K.; Bigam, G.;
Rabenstein, D. L. "Geometry of [10]annulenes," J. Am. Chem. Soc. 1971, 93, 4966-4968, DOI: 10.1021/ja00748a083.
-
Xie, Y.; Schaefer, H. F., III; Liang, G.; Bowen,
J. P. "[10]Annulene: The Wealth of Energetically Low-Lying Structural
Isomers of the Same (CH)10 Connectivity," J. Am. Chem. Soc. 1994, 116, 1442-1449, DOI: 10.1021/ja00083a032.
-
Sulzbach, H. M.; Schleyer, P. v. R.; Jiao, H.;
Xie, Y.; Schaefer, H. F., III "A [10]Annulene Isomer May Be Aromatic,
After All!," J. Am. Chem. Soc. 1995, 117, 1369-1373, DOI: 10.1021/ja00109a021.
-
King, R. A.; Crawford, T. D.; Stanton, J. F.;
Schaefer, H. F., III "Conformations of [10]Annulene: More Bad News for
Density Functional Theory and Second-Order Perturbation Theory," J. Am. Chem. Soc. 1999, 121, 10788-10793,
DOI: 10.1021/ja991429x.
-
Sulzbach, H. M.; Schaefer, H. F., III; Klopper,
W.; Luthi, H.-P. "Exploring the Boundary between Aromatic and Olefinic
Character: Bad News for Second-Order Perturbation Theory and Density Functional
Schemes," J. Am. Chem. Soc. 1996, 118, 3519-3520, DOI: 10.1021/ja9538400.
-
Wannere, C. S.; Sattelmeyer, K. W.; Schaefer, H.
F., III, ; Schleyer, P. v. R. "Aromaticity: The Alternating CC Bond Length
Structures of [14]-, [18]-, and [22]Annulene," Angew. Chem. Int. Ed. 2004,
43, 4200-4206, DOI: 10.1002/anie.200454188.
-
Castro, C.; Karney, W. L.; McShane, C. M.;
Pemberton, R. P. "[10]Annulene: Bond Shifting and Conformational
Mechanisms for Automerization," J.
Org. Chem. 2006, 71, DOI: 10.1021/jo0521450.
-
Price, D. R.; Stanton, J. F. "Computational
Study of [10]Annulene NMR Spectra," Org.
Lett. 2002, 4, 2809-2811, DOI: 10.1021/ol0200450.
-
Navarro-Vázquez, A.; Schreiner, P. R.
"1,2-Didehydro[10]annulenes: Structures, Aromaticity, and Cyclizations,"
J. Am. Chem. Soc. 2005, 127, 8150 - 8159, DOI: 10.1021/ja0507968.
-
Wannere, C. S.; Schleyer, P. v. R. "How
Aromatic Are Large (4n + 2) Annulenes?," Org. Lett. 2003, 5, 865-868, DOI: 10.1021/ol027571b.
-
Longuet-Higgins, H. C.; Salem, L.
"Alternation of Bond Lengths in Long Conjugated Chain Molecules," Proc. Roy. Soc. London 1959, A251, 172-185, DOI: 10.1098/rspa.1959.0100.
-
Chiang, C. C.; Paul, I. C. "Crystal and
Molecular Structure of [14]Annulene," J.
Am. Chem. Soc. 1972, 94, 4741-4743, DOI: 10.1021/ja00768a058.
-
Bregman, J.; Hirshfeld, F. L.; Rabinovich, D.;
Schmidt, G. M. J. "The Crystal Structure of [18]Annulene. I. X-ray
study," Acta Cryst. 1965, 19, 227-234, DOI: 10.1107/S0365110X65003158.
-
Gorter, S.; Rutten-Keulemans, E.; Krever, M.;
Romers, C.; Cruickshank, D. W. J. "[18]-Annulene, C18H18,
Structure, Disorder and Hueckel's 4n + 2 rule," Acta Crystallogr. B 1995,
51, 1036-1045, DOI: 10.1107/S0108768195004927.
-
Choi, C. H.; Kertesz, M.; Karpfen, A. "Do
Localized Structures of [14]- and [18]Annulenes Exist?," J. Am. Chem. Soc. 1997, 119, 11994-11995,
DOI: 10.1021/ja971035a.
-
Baldridge, K. K.; Siegel, J. S. "Ab Initio
Density Funtional vs Hartree Fock Predictions for the Structure of
[18]Annulene: Evidence for Bond Localization and Diminished Ring Currents in
Bicycloannelated [18]Annulenes," Angew.
Chem. Int. Ed. Engl 1997, 36, 745-748, DOI: 10.1002/anie.199707451.
-
Oth, J. F. M. "Conformational Mobility and
Fast Bond Shift in the Annulenes," Pure
Appl. Chem. 1971, 25, 573-622, DOI: 10.1351/pac197125030573.
-
Heilbronner, E. "Hückel Molecular Orbitals
of Möt:bius-Type Conformations of Annulenes," Tetrahedron Lett. 1964, 5, 1923-1928, DOI: 10.1016/S0040-4039(01)89474-0.
-
Rzepa, H. S. "Möbius Aromaticity and
Delocalization," Chem. Rev. 2005, 105, 3697 - 3715, DOI: 10.1021/cr030092l.
-
Castro, C.; Isborn, C. M.; Karney, W. L.;
Mauksch, M.; Schleyer, P. v. R. "Aromaticity with a Twist: Möbius
[4n]Annulenes," Org. Lett. 2002, 4, 3431-3434, DOI: 10.1021/ol026610g.
-
Ajami, D.; Hess, K.; Köhler, F.; Näther, C.;
Oeckler, O.; Simon, A.; Yamamoto, C.; Okamoto, Y.; Herges, R. "Synthesis
and Properties of the First Möbius Annulenes," Chem. Eur. J. 2006, 12, 5434-5445, DOI: 10.1002/chem.200600215.
-
Ajami, D.; Oeckler, O.; Simon, A.; Herges, R.
"Synthesis of a Möbius Aromatic Hydrocarbon," Nature 2003, 426, 819-821, DOI: 10.1038/nature02224.
-
Wannere, C. S.; Moran, D.; Allinger, N. L.;
Hess, B. A., Jr.; Schaad, L. J.; Schleyer, P. v. R. "On the Stability of Large
[4n]Annulenes," Org. Lett. 2003, 5, 2983-2986, DOI: 10.1021/ol034979f.
-
Castro, C.; Chen, Z.; Wannere, C. S.; Jiao, H.;
Karney, W. L.; Mauksch, M.; Puchta, R.; Hommes, N. J. R. v. E.; Schleyer, P. v.
R. "Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of
Benzannelation on Möbius [4n]Annulene Aromaticity," J. Am. Chem. Soc. 2005, 127, 2425-2432, DOI: 10.1021/ja0458165.
- Clar, E. The Aromatic Sextet; Wiley: London, 1972.
-
Shimizu, S.; Aratani, N.; Osuka, A. "meso-Trifluoromethyl-Substituted
Expanded Porphyrins," Chem. Eur. J.
2006, 12, 4909-4918, DOI: 10.1002/chem.200600158.
-
Rzepa, H. S. "Lemniscular Hexaphyrins as
Examples of Aromatic and Antiaromatic Double-Twist Mobius Molecules," Org. Lett. 2008, 10, 949-952, DOI: 10.1021/ol703129z.
-
Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.;
Shinokubo, H.; Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.;
Park , J. K.; Kim , D.; Osuka, A. "Metalation of Expanded Porphyrins: A
Chemical Trigger Used To Produce Molecular Twisting and Möbius
Aromaticity," Angew. Chem. Int. Ed.
2008, 47, 681-684, DOI: 10.1002/anie.200704407.
-
Tokuji, S.; Shin, J.-Y.; Kim, K. S.; Lim, J. M.;
Youfu, K.; Saito, S.; Kim, D.; Osuka, A. "Facile Formation of a
Benzopyrane-Fused [28]Hexaphyrin That Exhibits Distinct Mobius
Aromaticity," J. Am. Chem. Soc. 2009, 131, 7240-7241, DOI: 10.1021/ja902836x.
-
Castro, C.; Karney, W. L.; Valencia, M. A.; Vu,
C. M. H.; Pemberton, R. P. "Möbius Aromaticity in [12]Annulene: Cis-Trans
Isomerization via Twist-Coupled Bond Shifting," J. Am. Chem. Soc. 2005, 127, 9704-9705, DOI: 10.1021/ja052447j.
-
Moll, J. F.; Pemberton, R. P.; Gutierrez, M. G.;
Castro, C.; Karney, W. L. "Configuration Change in [14]Annulene Requires
Möbius Antiaromatic Bond Shifting," J.
Am. Chem. Soc. 2006, 129, 274-275, DOI: 10.1021/ja0678469.
-
Schleyer, P. v. R.; Barborak, J. C.; Su, T. M.;
Boche, G.; Schneider, G. "Thermal bicyclo[6.1.0]nonatrienyl
chloride-dihydroindenyl chloride rearrangement," J. Am. Chem. Soc. 1971, 93, 279-281, DOI: 10.1021/ja00730a063.
-
Yakali, E. "Genesis and bond relocation of
the cyclononatetraenyl cation and related compounds," Dissertation,
Syracuse University, 1973.
-
Mauksch, M.; Gogonea, V.; Jiao, H.; Schleyer, P.
v. R. "Monocyclic (CH)9+ - A Heilbronner Möbius
Aromatic System Revealed," Angew.
Chem. Int. Ed. 1998, 37, 2395-2397, DOI: 10.1002/(SICI)1521-3773(19980918)37:17<2395::AID-ANIE2395>3.0.CO;2-W.
-
Bucher, G.; Grimme, S.; Huenerbein, R.; Auer, A.
A.; Mucke, E.; Köhler, F.; Siegwarth, J.; Herges, R. "Is the [9]Annulene
Cation a Möbius Annulene?," Angew.
Chem. Int. Ed. 2009, 48, 9971-9974, DOI: 10.1002/anie.200900886.
-
Mucke, E.-K.; Kohler, F.; Herges, R. "The
[13]Annulene Cation Is a Stable Mobius Annulene Cation," Org. Lett. 2010, 12, 1708-1711, DOI:
10.1021/ol1002384.
-
Mucke, E.-K.; Schönborn, B.; Köhler,
F.; Herges, R. "Stability and Aromaticity of Charged
Möbius[4n]Annulenes," J. Org.
Chem. 2010, 76, 35-41, DOI: 10.1021/jo100798e.
-
Fowler, P. W.; Rzepa, H. S. "Aromaticity
rules for cycles with arbitrary numbers of half-twists," Phys. Chem. Chem. Phys. 2006, 8, 1775-1777, DOI: 10.1039/b601655c.
-
Wannere, C. S.; Rzepa, H. S.; Rinderspacher, B.
C.; Paul, A.; Allan, C. S. M.; Schaefer III, H. F.; Schleyer, P. v. R.
"The Geometry and Electronic Topology of Higher-Order Charged Mobius
Annulenes," J. Phys. Chem. A 2009, 113, 11619-11629, DOI: 10.1021/jp902176a.
-
Rzepa, H. S. "A Double-Twist Möbius-Aromatic
Conformation of [14]Annulene," Org.
Lett. 2005, 7, 4637-4639, DOI: 10.1021/ol0518333.
-
Okoronkwo, T.; Nguyen, P. T.; Castro, C.;
Karney, W. L. "[14]Annulene: Cis/Trans Isomerization via Two-Twist and
Nondegenerate Planar Bond Shifting and Möbius Conformational
Minima," Org. Lett. 2010, 12, 972-975, DOI: 10.1021/ol100025j.
-
Mohebbi, A.; Mucke, E. K.; Schaller, G.; Köhler,
F.; Sönnichsen, F.; Ernst, L.; N�ther, C.; Herges, R. "Singly and Doubly
Twisted [36]Annulenes: Synthesis and Calculations," Chem. Eur. J. 2010, 16, 7767-7772, DOI: 10.1002/chem.201000277.
-
Mills, W. H.; Nixon, I. G. "Stereochemical
Influences on Aromatic Substitution. Substitution Derivatives of 5-Hydroxyhydrindene,"
J. Chem. Soc. 1930, 2510-2524, DOI: 10.1039/jr9300002510.
-
Siegel, J. S. "Mills - Nixon Effect:
Wherefore Art Thou?," Angew. Chem.
Int. Ed. Engl. 1994, 33, 1721-1723, DOI: 10.1002/anie.199417211.
-
Stanger, A. "Strain-Induced Bond
Localization. The Heteroatom Case," J.
Am. Chem. Soc. 1998, 120, 12034-12040, DOI: 10.1021/ja9819662.
-
Stanger, A. "Is the Mills-Nixon Effect
Real?," J. Am. Chem. Soc. 1991, 113, 8277-8280, DOI: 10.1021/ja00022a012.
-
Baldridge, K. K.; Siegel, J. S. "Bond
Alternation in Triannelated Benzenes: Dissection of Cyclic π from Mills-Nixon Effects," J. Am. Chem. Soc. 1992, 114, 9583-9587,
DOI: 10.1021/ja00050a043.
-
Sakai, S. "Theoretical Study on the
Aromaticity of Benzenes Annelated to Small Rings," J. Phys. Chem. A. 2002, 106, 11526-11532, DOI: 10.1021/jp021722a.
-
Bachrach, S. M. "Aromaticity of Annulated
Benzene, Pyridine and Phosphabenzene," J.
Organomet. Chem. 2002, 643-644, 39-46, DOI: 10.1016/S0022-328X(01)01144-5.
-
Boese, R.; Bläser, D.; Billups, W. E.; Haley, M.
M.; Maulitz, A. H.; Mohler, D. L.; Vollhardt, K. P. C. "The Effect of
Fusion of Angular Strained Rings on Benzene: Crystal Structures of
1,2-Dihydrocyclobuta[a]cyclopropa[c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]-,
1,2,3,4-Tetrahydrodicyclobuta[a,c]cyclopropa[e]-, and
1,2,3,4,5,6-Hexahydrotricyclobuta[a,c,e]benzene," Angew. Chem. Int. Ed. Engl. 1994,
33, 313-317, DOI: 10.1002/anie.199403131.
-
Mo, O.; Yanez, M.; Eckert-Maksic, M.; Maksic, Z.
B. "Bent Bonds in Benzocyclopropenes and Their Fluorinated
Derivatives," J. Org. Chem. 1995, 60, 1638-1646, DOI: 10.1021/jo00111a023.
-
Bürgi, H.-B.; Baldridge, K. K.; Hardcastle, K.;
Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J. "X-Ray Diffraction
Evidence for a Cyclohexatriene Motif in the Molecular Structure of
Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after the Refutation of the
Mills-Nixon Theory," Angew. Chem.
Int. Ed. Engl. 1995, 34, 1454-1456, DOI: 10.1002/anie.199514541.
-
Diercks, R.; Vollhardt, K. P. C.
"Tris(benzocyclobutadieno)benzene, the Triangular [4]Phenylene with a
Completely Bond-Fixed Cyclohexatriene Ring: Cobalt-catalyzed Synthesis from
Hexaethynylbenzene and Thermal Ring Opening to
1,2:5,6:9,10-Tribenzo-3,4,7,8,11,12-hexadehydro[12]annulene," J. Am. Chem. Soc. 1986, 108, 3150-3152,
DOI: 10.1021/ja00271a080.
-
Boese, R.; Bläser, D. "Structures and
Deformation Electron Densities of 1,2-Dihydrocyclobutabenzene and
1,2,4,5-Tetrahydrodicyclobuta[a,d]benzene," Angew. Chem. Int. Ed. Engl. 1988,
27, 304-305, DOI: 10.1002/anie.198803041.
-
Alkorta, I.; Elguero, J. "Can Aromaticity
be Described with a Single Parameter? Benzene vs. Cyclohexatriene," New J. Chem. 1999, 23, 951-954, DOI: 10.1039/a904537f.
-
Bao, X.; Hrovat, D.; Borden, W. "The
effects of orbital interactions on the geometries of some annelated
benzenes," Theor. Chem. Acc. 2011, 130, 261-268, DOI: 10.1007/s00214-011-0970-4.
- Schulman, J. M.; Disch, R. L.; Jiao, H.; Schleyer, P. v.
R. "Chemical Shifts of the [N]Phenylenes and Related Compounds," J. Phys. Chem. A 1998, 102, 8051-8055,
DOI: 10.1021/jp982271q.
-
Beckhaus, H.-D.; Faust, R.; Matzger, A. J.;
Mohler, D. L.; Rogers, D. W.; Ruchardt, C.; Sawhney, A. K.; Verevkin, S. P.;
Vollhardt, K. P. C.; Wolff, S. "The Heat of Hydrogenation of (a)
Cyclohexatriene," J. Am. Chem. Soc.
2000, 122, 7819-7820, DOI: 10.1021/ja001274p.
-
Hopf, H. Classics
in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives; Wiley-VCH:
Weinheim, Germany, 2000.
-
Bodwell, G. J.; Fleming, J. J.; Mannion, M. R.;
Miller, D. O. "Nonplanar Aromatic Compounds. 3. A Proposed New Strategy
for the Synthesis of Buckybowls. Synthesis, Structure and Reactions of [7]-,
[8]- and [9](2,7)Pyrenophanes," J.
Org. Chem. 2000, 65, 5360-5370, DOI: 10.1021/jo0007027.
-
Dobrowolski, M. A.; Cyranski, M. K.; Merner, B.
L.; Bodwell, G. J.; Wu, J. I.; Schleyer, P. v. R. "Interplay of π-Electron Delocalization and Strain
in [n](2,7)Pyrenophanes," J. Org.
Chem. 2008, 73, 8001-8009, DOI: 10.1021/jo8014159.
-
Swart, M.; van der Wijst, T.; Guerra, C. F.;
Bickelhaupt, F. M. " π-π stacking tackled with density
functional theory," 2007, 13, 1245-1257, DOI: 10.1007/s00894-007-0239-y.
-
Hobza, P.; Selzle, H. L.; Schlag, E. W.
"Potential Energy Surface for the Benzene Dimer. Results of ab Initio
CCSD(T) Calculations Show Two Nearly Isoenergetic Structures: T-Shaped
and Parallel-Displaced," J. Phys.
Chem. 1996, 100, 18790-18794, DOI: 10.1021/jp961239y.
-
Steed, J. M.; Dixon, T. A.; Klemperer, W.
"Molecular beam studies of benzene dimer, hexafluorobenzene dimer, and
benzene--hexafluorobenzene," J.
Chem. Phys 1979, 70, 4940-4946, DOI: 10.1063/1.437383.
-
Arunan, E.; Gutowsky, H. S. "The rotational
spectrum, structure and dynamics of a benzene dimer," J. Chem. Phys 1993, 98, 4294-4296, DOI: 10.1063/1.465035.
-
Felker, P. M.; Maxton, P. M.; Schaeffer, M. W.
"Nonlinear Raman Studies of Weakly Bound Complexes and Clusters in Molecular
Beams," Chem. Rev. 1994, 94, 1787-1805, DOI: 10.1021/cr00031a003.
-
Bornsen, K. O.; Selzle, H. L.; Schlag, E. W.
"Spectra of isotopically mixed benzene dimers: Details on the interaction
in the vdW bond," J. Chem. Phys 1986, 85, 1726-1732, DOI: 10.1063/1.451173.
-
Law, K.; Schauer, M.; Bernstein, E. R.
"Dimers of aromatic molecules: (Benzene)2, (toluene)2,
and benzene--toluene," J. Chem.
Phys. 1984, 81, 4871-4882, DOI: 10.1063/1.447514.
-
Scherzer, W.; Kraetzschmar, O.; Selzle, H. L.;
Schlag, E. W. "Structural isomers of the benzene dimer from mass selective
hole-burning spectroscopy," Z.
Naturforsch. A 1992, 47, 1248-1252.
-
Grover, J. R.; Walters, E. A.; Hui, E. T.
"Dissociation energies of the benzene dimer and dimer cation," J. Phys. Chem. 1987, 91, 3233-3237, DOI:
<10.1021/j100296a026.
-
Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D.
"Estimates of the Ab Initio Limit for π−π
Interactions: The Benzene Dimer," J. Am. Chem. Soc. 2002, 124, 10887-10893, DOI: 10.1021/ja025896h.
-
Sinnokrot, M. O.; Sherrill, C. D. "Highly
Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer:
Sandwich, T-Shaped, and Parallel-Displaced Configurations," J. Phys. Chem. A 2004, 108, 10200-10207,
DOI: 10.1021/jp0469517.
-
Grimme, S. "Do Special Noncovalent
π-π Stacking Interactions Really Exist?," Angew. Che, Int. Ed. 2008,
47, 3430-3434, DOI: 10.1002/anie.200705157.
-
Sherrill, C. D.; Takatani, T.; Hohenstein, E. G.
"An Assessment of Theoretical Methods for Nonbonded Interactions:
Comparison to Complete Basis Set Limit Coupled-Cluster Potential Energy Curves
for the Benzene Dimer, the Methane Dimer, Benzene−Methane, and
Benzene−H2S-," J. Phys. Chem.
A 2009, 113, 10146-10159, DOI: 10.1021/jp9034375.
-
Pitoňák, M.; Neogrády, P.;
R̆ezáč, J.; Jurečka, P.; Urban, M.; Hobza, P.
"Benzene Dimer: High-Level Wave Function and Density Functional Theory
Calculations," J. Chem. Theor.
Comput. 2008, 4, 1829-1834, DOI: 10.1021/ct800229h.
-
Hunter, C. A.; Sanders, J. K. M. "The
nature of π-π interactions," J. Am. Chem.
Soc. 1990, 112, 5525-5534, DOI: 10.1021/ja00170a016.
-
Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer,
T.; Siegel, J. S. "Polar/π interactions between stacked aryls in 1,8-diarylnaphthalenes," J. Am. Chem. Soc. 1992, 114, 5729-5733,
DOI: 10.1021/ja00040a036.
-
Sinnokrot, M. O.; Sherrill, C. D.
"Unexpected Substituent Effects in Face-to-Face π-Stacking
Interactions," J. Phys. Chem. A 2003, 107, 8377-8379, DOI: 10.1021/jp030880e.
-
Sinnokrot, M. O.; Sherrill, C. D.
"Substituent Effects in π−π Interactions: Sandwich
and T-Shaped Configurations," J. Am.
Chem. Soc. 2004, 126, 7690-7697, DOI: 10.1021/ja049434a.
-
Lee, E. C.; Kim, D.; Jurečka, P.;
Tarakeshwar, P.; Hobza, P.; Kim, K. S. "Understanding of Assembly
Phenomena by Aromatic−Aromatic Interactions: Benzene Dimer and the
Substituted Systems," J. Phys. Chem.
A 2007, 111, 3446-3457, DOI: 10.1021/jp068635t.
-
Grimme, S.; Antony, J.; Schwabe, T.;
Muck-Lichtenfeld, C. "Density functional theory with dispersion
corrections for supramolecular structures, aggregates, and complexes of
(bio)organic molecules," Org.
Biomol. Chem. 2007, 5, 741-758, DOI: 10.1039/B615319B.
-
Watt, M.; Hardebeck, L. K. E.; Kirkpatrick, C.
C.; Lewis, M. "Face-to-Face Arene−Arene Binding Energies: Dominated
by Dispersion but Predicted by Electrostatic and Dispersion/Polarizability
Substituent Constants," J. Am. Chem.
Soc. 2011, 133, 3854-3862, DOI: 10.1021/ja105975a.
-
Ringer, A. L.; Sinnokrot, M. O.; Lively, R. P.;
Sherrill, C. D. "The Effect of Multiple Substituents on Sandwich and
T-Shaped π-π Interactions," Chem.
Eur. J. 2006, 12, 3821-3828, DOI: 10.1002/chem.200501316.
-
Wheeler, S. E. "Local Nature of Substituent
Effects in Stacking Interactions," J.
Am. Chem. Soc. 2011, 133, 10262-10274, DOI: 10.1021/ja202932e.
-
Arnstein, S. A.; Sherrill, C. D.
"Substituent effects in parallel-displaced <π -
π interactions," Phys. Chem. Chem. Phys. 2008, 10, 2646-2655, DOI: 10.1039/B718742D.
-
Wheeler, S. E.; Houk, K. N. "Substituent
Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents
with the Unsubstituted Benzene," J.
Am. Chem. Soc. 2008, 130, 10854-10855, DOI: 10.1021/ja802849j.
-
Ringer, A. L.; Sherrill, C. D. "Substituent
Effects in Sandwich Configurations of Multiply Substituted Benzene Dimers Are
Not Solely Governed By Electrostatic Control," J. Am. Chem. Soc. 2009, 131, 4574-4575, DOI: 10.1021/ja809720r.
-
Bloom, J. W. G.; Wheeler, S. E. "Taking the
Aromaticity out of Aromatic Interactions," Angew. Che, Int. Ed. 2011,
50, 7847-7849, DOI: 10.1002/anie.201102982.
-
Martinez, C. R.; Iverson, B. L. "Rethinking
the term "pi-stacking"," Chem.
Sci. 2012, 3, 2191-2201, DOI: 10.1039/C2SC20045G.