About the Book

Citations

Molecules

  • » Under Construction

Chapter 3 Citations

  1. Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X. "Assessment of Experimental Bond Dissociation Energies Using Composite ab Initio Methods and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond Dissociation Energies," J. Chem. Inf. Comput. Sci. 2003, 43, 2005-2013, DOI: 10.1021/ci034033k.
  2. Blanksby, S. J.; Ellison, G. B. "Bond Dissociation Energies of Organic Molecules," Acc. Chem. Res. 2003, 36, 255-263, DOI: 10.1021/ar020230d.
  3. Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. "Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals," J. Phys. Chem. A 2001, 105, 6750-6756, DOI: 10.1021/jp010442c.
  4. Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo, Q.-X. "Homolytic C-H and N-H Bond Dissociation Energies of Strained Organic Compounds," J. Org. Chem. 2004, 69, 3129-3138, DOI: 10.1021/jo035306d.
  5. Menon, A. S.; Wood, G. P. F.; Moran, D.; Radom, L. "Bond Dissociation Energies and Radical Stabilization Energies: An Assessment of Contemporary Theoretical Procedures," J. Phys. Chem. A 2007, 111, 13638-13644, DOI: 10.1021/jp076521r.
  6. Yao, X.-Q.; Hou, X.-J.; Jiao, H.; Xiang, H.-W.; Li, Y.-W. "Accurate Calculations of Bond Dissociation Enthalpies with Density Functional Methods," J. Phys. Chem. A 2003, 107, 9991-9996, DOI: 10.1021/jp0361125.
  7. Check, C. E.; Gilbert, T. M. "Progressive Systematic Underestimation of Reaction Energies by the B3LYP Model as the Number of C-C Bonds Increases: Why Organic Chemists Should Use Multiple DFT Models for Calculations Involving Polycarbon Hydrocarbons," J. Org. Chem. 2005, 70, 9828-9834, DOI: 10.1021/jo051545k.
  8. Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. "Assessment of Gaussian-3 and Density Functional Theories for Enthalpies of Formation of C1-C16 Alkanes," J. Phys. Chem. A 2000, 104, 5850-5854, DOI: 10.1021/jp994429s.
  9. Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: New York, 2002.
  10. Rüchardt, C. "Relations Between Structure and Reactivity in Free-Radical Chemistry," Angew. Chem. Int. Ed. Engl. 1970, 9, 830-843, DOI: 10.1002/anie.197008301.
  11. Izgorodina, E. I.; Coote, M. L.; Radom, L. "Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A Surprising Shortcoming of Density Functional Theory," J. Phys. Chem. A 2005, 109, 7558-7566, DOI: http://dx.doi.org/10.1021/jp052021r.
  12. Coote, M. L.; Pross, A.; Radom, L. "Variable Trends in R-X Bond Dissociation Energies (R = Me, Et, i-Pr, t-Bu)," Org. Lett. 2003, 5, 4689-4692, DOI: http://dx.doi.org/10.1021/ol035860+.
  13. Matsunaga, N.; Rogers, D. W.; Zavitsas, A. A. "Pauling's Electronegativity Equation and a New Corollary Accurately Predict Bond Dissociation Enthalpies and Enhance Current Understanding of the Nature of the Chemical Bond," J. Org. Chem. 2003, 68, 3158-3172, DOI: 10.1021/jo020650g.
  14. Lias, S. G.; Bartmess, J. E.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. "Gas-Phase Ion and Neutral Thermochemistry," J. Phys. Chem. Ref. Data 1988, Suppl. 17.
  15. Linstrom, P. J.; Mallard, W. G. "NIST Chemistry WebBook, NIST Standard Reference Database Number 69," 2012, URL: http://webbook.nist.gov/.
  16. Kollmar, H. "The Stability of Alkyl Anions. A Molecular Orbital Theoretical Study," J. Am. Chem. Soc. 1978, 100, 2665-2669, DOI: 10.1021/ja00477a016.
  17. Chandrasekhar, J.; Andrade, J. G.; Schleyer, P. v. R. "Efficient and Accurate Calculation of Anion Proton Affinities," J. Am. Chem. Soc. 1981, 103, 5609-5612, DOI: 10.1021/ja00408a074.
  18. Saunders, W. H., Jr. "Ab Initio and Semi-Empirical Investigation of Gas-Phase Carbon Acidity," J. Phys. Org. Chem. 1994, 7, 268-271, DOI: 10.1002/poc.610070509.
  19. Burk, P.; Koppel, I. A.; Koppel, I.; Leito, I.; Travnikova, O. "Critical Test of Performance of B3LYP Functional for Prediction of Gas-Phase Acidities and Basicities," Chem. Phys. Lett. 2000, 323, 482-489, DOI: 10.1016/S0009-2614(00)00566-2.
  20. Merrill, G. N.; Kass, S. R. "Calculated Gas-Phase Acidities Using Density Functional Theory: Is It Reliable?," J. Phys. Chem. 1996, 100, 17465-17471, DOI: 10.1021/jp961557x.
  21. Ochterski, J. W.; G. A. Petersson, G. A.; Montgomery, J. A., Jr. "A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms," J. Chem. Phys. 1996, 104, 2598-2619, DOI: 10.1063/1.470985.
  22. Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. "A Comparison of Model Chemistries," J. Am. Chem. Soc. 1995, 117, 11299-11308, DOI: 10.1021/ja00150a030.
  23. Topol, I. A.; Tawa, G. J.; Caldwell, R. A.; Eissenstat, M. A.; Burt, S. K. "Acidity of Organic Molecules in the Gas Phase and in Aqueous Solvent," J. Phys. Chem. A 2000, 104, 9619-9624, DOI: 10.1021/jp001938h.
  24. DePuy, C. H.; Gronert, S.; Barlow, S. E.; Bierbaum, V. M.; Damrauer, R. "The Gas-Phase Acidities of the Alkanes," J. Am. Chem. Soc. 1989, 111, 1968-1973, DOI: 10.1021/ja00188a003.
  25. Luh, T.-Y.; Stock, L. M. "Kinetic Acidity of Cubane," J. Am. Chem. Soc. 1974, 96, 3712-3713, DOI: 10.1021/ja00818a090.
  26. Ritchie, J. P.; Bachrach, S. M. "Comparison of the Calculated Acidity of Cubane with That of Other Strained and Unstrained Hydrocarbons," J. Am. Chem. Soc. 1990, 112, 6514-6517, DOI: 10.1021/ja00174a010.
  27. Hare, M.; Emrick, T.; Eaton, P. E.; Kass, S. R. "Cubyl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Cubane," J. Am. Chem. Soc. 1997, 119, 237-238, DOI: 10.1021/ja9627858.
  28. Rayne, S.; Forest, K. "Gas-phase enthalpies of formation, acidities, and strain energies of the [m,n]polyprismanes (m ≥ 2; n = 3-8; m x n  ≤ 16): a CBS-Q//B3, G4MP2, and G4 theoretical study," Theor. Chem. Acc. 2010, 127, 697-709, DOI: 10.1007/s00214-010-0780-0.
  29. Broadus, K. M.; Kass, S. R.; Osswald, T.; Prinzbach, H. "Dodecahedryl Anion Formation and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of Dodecahedrane," J. Am. Chem. Soc. 2000, 122, 10964-10968, DOI: 10.1021/ja002588f.
  30. Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass, S. R. "Why Does Cyclopropene Have the Acidity of an Acetylene but the Bond Energy of Methane?," J. Am. Chem. Soc. 2003, 125, 11746-11750, DOI: 10.1021/ja035725s.
  31. Manini, P.; Amrein, W.; Gramlich, V.; Diederich, F. "Expanded Cubane: Synthesis of a Cage Compound with a C56 Core by Acetylenic Scaffolding and Gas-Phase Transformations into Fullerenes," Angew. Chem. Int. Ed. 2002, 4339-4343, DOI: 10.1002/1521-3773(20021115)41:22<4339::AID-ANIE4339>3.0.CO;2-8.
  32. Bachrach, S. M. "Structure, Deprotonation Energy, and Cation Affinity of an Ethynyl-Expanded Cubane," J. Phys. Chem. A. 2003, 107, 4957-4961, DOI: 10.1021/jp034406k.
  33. Bachrach, S. M.; Demoin, D. W. "Computational Studies of Ethynyl- and Diethynyl-Expanded Tetrahedranes, Prismanes, Cubanes, and Adamantanes," J. Org. Chem. 2006, 71, 5105-5116, DOI: 10.1021/jo060240i.
  34. de Visser, S. P.; van der Horst, E.; de Koning, L. J.; van der Hart, W. J.; Nibbering, N. M. M. "Characterization of Isomeric C4H5- Anions in the Gas Phase; Theory and Experiment," J. Mass. Spectrom. 1999, 34, 303-310, DOI: 10.1002/(SICI)1096-9888(199904)34:4<303::AID-JMS753>3.0.CO;2-C.
  35. Siggel, M. R.; Thomas, T. D. "Why are Organic Acids Stronger Acids than Organic Alcohols?," J. Am. Chem. Soc. 1986, 108, 4360-4363, DOI: 10.1021/ja00275a022.
  36. Burk, P.; Schleyer, P. v. R. "Why are Carboxylic Acids Stronger Acids than Alcohols? The Electrostatic Theory of Siggel-Thomas Revisited," J. Mol. Struct. (THEOCHEM) 2000, 505, 161-167, DOI: 10.1016/S0166-1280(99)00357-7.
  37. Siggel, M. R. F.; Streitwieser, A. J.; Thomas, T. D. "The Role of Resonance and Inductive Effects in the Acidity of Carboxylic Acids," J. Am. Chem. Soc. 1988, 110, 8022-8028, DOI: 10.1021/ja00232a011.
  38. Exner, O. "Why are Carboxylic Acids and Phenols Stronger Acids than Alcohols?," J. Org. Chem. 1988, 53, 1810-1812, DOI: 10.1021/jo00243a042.
  39. Dewar, M. J. S.; Krull, K. L. "Acidity of Carboxylic Acids: Due to Delocalization or Induction?," J. Chem. Soc., Chem. Commun. 1990, 333-334, DOI: 10.1039/C39900000333.
  40. Perrin, C. L. "Atomic Size Dependence of Bader Electron Populations: Significance for Questions of Resonance Stabilization," J. Am. Chem. Soc. 1991, 113, 2865-2868, DOI: 10.1021/ja00008a011.
  41. Hiberty, P. C.; Byrman, C. P. "Role of π-Electron Delocalization in the Enhanced Acidity of Carboxylic Acids and Enols Relative to Alcohols," J. Am. Chem. Soc. 1995, 117, 9875-9880, DOI: 10.1021/ja00144a013.
  42. Rablen, P. R. "Is the Acetate Anion Stabilized by Resonance or Electrostatics? A Systematic Structural Comparison," J. Am. Chem. Soc. 2000, 122, 357-368, DOI: 10.1021/ja9928475
  43. Holt, J.; Karty, J. M. "Origin of the Acidity Enhancement of Formic Acid over Methanol: Resonance versus Inductive Effects," J. Am. Chem. Soc. 2003, 125, 2797-2803, DOI: 10.1021/ja020803h.
  44. O'Hair, R. A. J.; Bowie, J. H.; Gronert, S. "Gas phase acidities of the α-amino acids," Int. J. Mass Spectrom. Ion Processes 1992, 117, 23-36, DOI: 10.1016/0168-1176(92)80083-D.
  45. Jones, C. M.; Bernier, M.; Carson, E.; Colyer, K. E.; Metz, R.; Pawlow, A.; Wischow, E. D.; Webb, I.; Andriole, E. J.; Poutsma, J. C. "Gas-Phase Acidities of the 20 Protein Amino Acids," Int. J. Mass Spectrom. 2007, 267, 54-62, DOI: 10.1016/j.ijms.2007.02.018.
  46. Tian, Z.; Pawlow, A.; Poutsma, J. C.; Kass, S. R. "Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidity, H/D Exchange Experiments, and Computations on Cysteine and Its Conjugate Base," J. Am. Chem. Soc. 2007, 129, 5403-5407, DOI: 10.1021/ja0666194.
  47. Tian, Z.; Wang, X.-B.; Wang, L.-S.; Kass, S. R. "Are Carboxyl Groups the Most Acidic Sites in Amino Acids? Gas-Phase Acidities, Photoelectron Spectra, and Computations on Tyrosine, p-Hydroxybenzoic Acid, and Their Conjugate Bases," J. Am. Chem. Soc. 2009, 131, 1174-1181, DOI: 10.1021/ja807982k.
  48. Smith, G. D.; Jaffe, R. L. "Quantum Chemistry Study of Conformational Energies and Rotational Energy Barriers in n-Alkanes," J. Phys. Chem. 1996, 100, 18718-18724, DOI: 10.1021/jp960413f.
  49. Gruzman, D.; Karton, A.; Martin, J. M. L. "Performance of Ab Initio and Density Functional Methods for Conformational Equilibria of CnH2n+2 Alkane Isomers (n = 4-8)," J. Phys. Chem. A 2009, 113, 11974-11983, DOI: 10.1021/jp903640h.
  50. Allinger, N. L.; Fermann, J. T.; Allen, W. D.; Schaefer Iii, H. F. "The torsional conformations of butane: Definitive energetics from ab initio methods," J. Chem. Phys 1997, 106, 5143-5150, DOI: 10.1063/1.473993.
  51. Herrebout, W. A.; van der Veken, B. J.; Wang, A.; Durig, J. R. "Enthalpy Difference between Conformers of n-Butane and the Potential Function Governing Conformational Interchange," J. Phys. Chem. 1995, 99, 578-585, DOI: 10.1021/j100002a020.
  52. Balabin, R. M. "Enthalpy Difference between Conformations of Normal Alkanes: Raman Spectroscopy Study of n-Pentane and n-Butane," J. Phys. Chem. A 2009, 113, 1012-1019, DOI: 10.1021/jp809639s.
  53. Martin, J. M. L.; de Oliveira, G. "Towards Standard Methods for Benchmark Quality ab Initio Thermochemistry - W1 and W2 Theory," J. Chem. Phys. 1999, 111, 1843-1856, DOI: 10.1063/1.479454.
  54. Parthiban, S.; Martin, J. M. L. "Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities," J. Chem. Phys. 2001, 114, 6014-6029, DOI: 10.1063/1.1356014.
  55. Balabin, R. M. "Enthalpy difference between conformations of normal alkanes: effects of basis set and chain length on intramolecular basis set superposition error," Mol. Phys. 2011, 109, 943-953, DOI: 10.1080/00268976.2011.558858.
  56. Asturiol, D.; Duran, M.; Salvador, P. "Intramolecular basis set superposition error effects on the planarity of benzene and other aromatic molecules: A solution to the problem," J. Chem. Phys. 2008, 128, 144108, DOI: 10.1063/1.2902974.
  57. Csázár, A. G. "Conformers of Gaseous α-Alanine," J. Phys. Chem. 1996, 100, 3541-3551, DOI: 10.1021/jp9533640.
  58. Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. "Millimeter-wave spectroscopy of biomolecules: alanine," J. Am. Chem. Soc. 1993, 115, 9687-9691, DOI: 10.1021/ja00074a039.
  59. Jaeger, H. M.; Schaefer, H. F.; Demaison, J.; Császár, A. G.; Allen, W. D. "Lowest-Lying Conformers of Alanine: Pushing Theory to Ascertain Precise Energetics and Semiexperimental Re Structures," J. Chem. Theory Comput. 2010, 6, 3066-3078, DOI: 10.1021/ct1000236.
  60. Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J. L. "The Gas-Phase Structure of Alanine," J. Am. Chem. Soc. 2004, 126, 11675-11683, DOI: 10.1021/ja048317c.
  61. Gronert, S.; O'Hair, R. A. J. "Ab Initio Studies of Amino Acid Conformations. 1. The Conformers of Alanine, Serine, and Cysteine," J. Am. Chem. Soc. 1995, 117, 2071-2081, DOI: 10.1021/ja00112a022.
  62. Dobrowolski, J. C.; Rode, J. E.; Sadlej, J. "Cysteine conformations revisited," J. Mol. Struct. THEOCHEM 2007, 810, 129-134, DOI: 10.1016/j.theochem.2007.02.011.
  63. Sanz, M. E.; Blanco, S.; López, J. C.; Alonso, J. L. "Rotational Probes of Six Conformers of Neutral Cysteine," Angew. Chem. Int. Ed. 2008, 47, 6216-6220, DOI: 10.1002/anie.200801337.
  64. Wilke, J. J.; Lind, M. C.; Schaefer, H. F.; Császáá;r, A. G.; Allen, W. D. "Conformers of Gaseous Cysteine," J. Chem. Theor. Comput. 2009, 5, 1511-1523, DOI: 10.1021/ct900005c.
  65. Grimme, S. "Seemingly Simple Stereoelectronic Effects in Alkane Isomers and the Implications for Kohn-Sham Density Functional Theory," Angew. Chem. Int. Ed. 2006, 45, 4460-4464, DOI: 10.1002/anie.200600448.
  66. NIST "NIST Chemistry WebBook," 2005, URL: http://webbook.nist.gov/.
  67. Zhao, Y.; Truhlar, D. G. "A Density Functional That Accounts for Medium-Range Correlation Energies in Organic Chemistry," Org. Lett. 2006, 8, 5753-5755, DOI: 10.1021/ol062318n.
  68. Schreiner, P. R.; Fokin, A. A.; Pascal, R. A.; deMeijere, A. "Many Density Functional Theory Approaches Fail To Give Reliable Large Hydrocarbon Isomer Energy Differences," Org. Lett. 2006, 8, 3635-3638, DOI: 10.1021/ol0610486 .
  69. Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. "Systematic Errors in Computed Alkane Energies Using B3LYP and Other Popular DFT Functionals," Org. Lett. 2006, 8, 3631-3634, DOI: 10.1021/ol061016i.
  70. Wodrich, M. D.; Corminboeuf, C.; Schreiner, P. R.; Fokin, A. A.; Schleyer, P. v. R. "How Accurate Are DFT Treatments of Organic Energies?," Org. Lett. 2007, 9, 1851-1854, DOI: 10.1021/ol070354w.
  71. Pieniazek, S. N.; Clemente, F. R.; Houk, K. N. "Sources of Error in DFT Computations of C-C Bond Formation Thermochemistries: π → σ Transformations and Error Cancellation by DFT Methods," Angew. Chem. Int. Ed. 2008, 47, 7746-7749, DOI: 10.1002/anie.200801843.
  72. Brittain, D. R. B.; Lin, C. Y.; Gilbert, A. T. B.; Izgorodina, E. I.; Gill, P. M. W.; Coote, M. L. "The role of exchange in systematic DFT errors for some organic reactions," Phys. Chem. Chem. Phys. 2009, DOI: 10.1039/b818412g.
  73. Song, J.-W.; Tsuneda, T.; Sato, T.; Hirao, K. "Calculations of Alkane Energies Using Long-Range Corrected DFT Combined with Intramolecular van der Waals Correlation," Org. Lett. 2010, 12, 1440�1443, DOI: 10.1021/ol100082z.
  74. Sato, T.; Nakai, H. "Density functional method including weak interactions: Dispersion coefficients based on the local response approximation," J. Chem. Phys 2009, 131, 224104-224112, DOI: 10.1063/1.3269802.
  75. Grimme, S. "n-Alkane Isodesmic Reaction Energy Errors in Density Functional Theory Are Due to Electron Correlation Effects," Org. Lett. 2010, 12, 4670-4673, DOI: 10.1021/ol1016417.
  76. Krieg, H.; Grimme, S. "Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!," Mol. Phys. 2010, 108, 2655-2666, DOI: 10.1080/00268976.2010.519729.
  77. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. "Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions," J. Chem. Theory Comput. 2006, 2, 364-382, DOI: 10.1021/ct0502763.
  78. Zhao, Y.; Truhlar, D. "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals," Theor. Chem. Acc. 2008, 120, 215-241, DOI: 10.1007/s00214-007-0310-x.
  79. Mardirossian, N.; Parkhill, J. A.; Head-Gordon, M. "Benchmark results for empirical post-GGA functionals: Difficult exchange problems and independent tests," Phys. Chem. Chem. Phys. 2011, 13, 19325-19337, DOI: 10.1039/C1CP21635J.
  80. Song, J.-W.; Tsuneda, T.; Sato, T.; Hirao, K. "An examination of density functional theories on isomerization energy calculations of organic molecules," Theor. Chem. Acc. 2011, 130, 851-857, DOI: 10.1007/s00214-011-0997-6.
  81. Chai, J.-D.; Head-Gordon, M. "Systematic optimization of long-range corrected hybrid density functionals," J. Chem. Phys 2008, 128, 084106-084115, DOI: 10.1063/1.2834918.
  82. McBride, J. M. "The hexaphenylethane riddle," Tetrahedron 1974, 30, 2009-2022, DOI: 10.1016/s0040-4020(01)97332-6.
  83. Selwood, P. W.; Dobres, R. M. "The Diamagnetic Correction for Free Radicals," J. Am. Chem. Soc. 1950, 72, 3860-3863, DOI: 10.1021/ja01165a007.
  84. Kahr, B.; Van Engen, D.; Mislow, K. "Length of the ethane bond in hexaphenylethane and its derivatives," J. Am. Chem. Soc. 1986, 108, 8305-8307, DOI: 10.1021/ja00286a053.
  85. Grimme, S.; Schreiner, P. R. "Steric Crowding Can Stabilize a Labile Molecule: Solving the Hexaphenylethane Riddle," Angew. Chem. Int. Ed. 2011, 50, 12639-12642, DOI: 10.1002/anie.201103615.
  86. Schreiner, P. R.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A. "Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces," Nature 2011, 477, 308-311, DOI: 10.1038/nature10367.
  87. Fokin, A. A.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R. "Stable Alkanes Containing Very Long Carbon-Carbon Bonds," J. Am. Chem. Soc. 2012, 134, 13641-13650, DOI: 10.1021/ja302258q.
  88. Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; Wiley: New York, 2001.
  89. Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds; 2nd ed.; Chapman and Hall: London, 1986.
  90. Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. "Additivity Rules for the Estimation of Thermochemical Properties," Chem. Rev. 1969, 69, 279-324, DOI: 10.1021/cr60259a002 .
  91. Benson, S. W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; 2nd ed.; Wiley: New York, 1976.
  92. Wiberg, K. B. "Group Equivalents for Converting ab initio Energies to Enthalpies of Formation," J. Comp. Chem. 1984, 5, 197-199, DOI: 10.1002/jcc.540050212.
  93. Ibrahim, M. R.; Schleyer, P. v. R. "Atom Equivalents for Relating ab initio Energies to Enthalpies of Formation," J. Comp. Chem. 1985, 6, 157-167, DOI: 10.1002/jcc.540060302.
  94. Cioslowski, J.; Liu, G.; Piskorz, P. "Computationally Inexpensive Theoretical Thermochemistry," J. Phys. Chem. A 1998, 102, 9890-9900, DOI: 10.1021/jp982024m.
  95. Guthrie, J. P. "Heats of Formation from DFT Calculations: An Examination of Several Parameterizations," J. Phys. Chem. A 2001, 105, 9196-9202, DOI: 10.1021/jp010355k.
  96. Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. "Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation," J. Am. Chem. Soc. 1970, 92, 4796-4801, DOI: 10.1021/ja00719a006.
  97. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. "An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons," Tetrahedron 1976, 32, 317-323, DOI: 10.1016/0040-4020(76)80043-9.
  98. George, P.; Trachtman, M.; Brett, A. M.; Bock, C. W. "Comparison of various isodesmic and homodesmotic reaction heats with values derived from published ab initio molecular orbital calculations," J. Chem. Soc., Perkin Trans. 2 1977, 1036-1047, DOI: 10.1039/P29770001036.
  99. Bachrach, S. M. "The Group Equivalent Reaction: An Improved Method for Determining Ring Strain Energy," J. Chem. Ed. 1990, 67, 907-908, DOI: 10.1021/ed067p907.
  100. Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. "A Hierarchy of Homodesmotic Reactions for Thermochemistry," J. Am. Chem. Soc. 2009, 131, 2547-2560, DOI: 10.1021/ja805843n.
  101. Boatz, J. A.; Gordon, M. S.; Hilderbrandt, R. L. "Structure and Bonding in Cycloalkanes and Monosilacycloalkanes," J. Am. Chem. Soc. 1988, 110, 352-358, DOI: 10.1021/ja00210a005.
  102. Alcamí, M.; Mó, O.; Yáñez, M. "G2 ab Initio Calculations on Three-Membered Rings: Role of Hydrogen Atoms," J. Comp. Chem. 1998, 19, 1072-1086, DOI: 10.1002/(SICI)1096-987X(19980715)19:9<1072::AID-JCC8>3.0.CO;2-N.
  103. Cremer, D. "Pros and Cons of σ-Aromaticity," Tetrahedron 1988, 44, 7427-7454, DOI: 10.1016/S0040-4020(01)86238-4.
  104. Cremer, D.; Gauss, J. "Theoretical Determination of Molecular Structure and Conformation. 20. Reevaluation of the Strain Energies of Cyclopropane and Cyclobutane - CC and CH Bond Energies, 1,3 Interactions, and σ-Aromaticity," J. Am. Chem. Soc. 1986, 108, 7467-7477, DOI: 10.1021/ja00284a004.
  105. Baeyer, A. v. "Über Polyacetylenverbindungen," Chem. Ber. 1885, 18, 2269-2281.
  106. Huisgen, R. "Adolf von Baeyer's Scientific Achievements - a Legacy," Angew. Chem. Int. Ed. Engl. 1986, 25, 297-311, DOI: 10.1002/anie.198602973.
  107. Snyder, R. G.; Schachtschneider, J. H. "A Valence Force Field for Saturated Hydrocarbons," Spectrochim. Acta 1965, 21, 169-195, DOI: 10.1016/0371-1951(65)80115-1.
  108. Walsh, A. D. "Structures of Ethylene Oxide, Cyclopropane, and Related Molecules," Trans. Faraday Soc. 1949, 45, 179-190, DOI: 10.1039/TF9494500179 .
  109. Bader, R. F. W. Atoms in Molecules - A Quantum Theory; Oxford University Press: Oxford, 1990.
  110. Pitzer, K. S. "Strain Energies of Cyclic Hydrocarbons," Science 1945, 101, 672, DOI: 10.1126/science.101.2635.672.
  111. Dunitz, J. D.; Schomaker, V. "The Molecular Structure of Cyclobutane," J. Chem. Phys. 1952, 20, 1703-1707, DOI: 10.1063/1.1700271.
  112. Bauld, N. L.; Cessac, J.; Holloway, R. L. "1,3(Nonbonded) carbon/carbon interactions. The common cause of ring strain, puckering, and inward methylene rocking in cyclobutane and of vertical nonclassical stabilization, pyramidalization, puckering, and outward methylene rocking in the cyclobutyl cation," J. Am. Chem. Soc. 1977, 99, 8140-8144, DOI: 10.1021/ja00467a003.
  113. Coulson, C. A.; Moffitt, W. E. "The Properties of Certain Strained Hydrocarbons," Phil. Mag. 1949, 40, 1-35.
  114. Baghal-Vayjooee, M. H.; Benson, S. W. "Kinetics and thermochemistry of the reaction atomic chlorine + cyclopropane .dblarw. hydrochloric acid + cyclopropyl. Heat of formation of the cyclopropyl radical," J. Am. Chem. Soc. 1979, 101, 2838-2840, DOI: 10.1021/ja00505a005.
  115. Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. "Kinetics and Thermochemistry of R + HBr .dblarw. RH + Br Reactions: Determinations of the Heat of Formation of C2H5, i-C3H7, sec-C4H9 and t-C4H9," J. Phys. Chem. 1992, 96, 9847-9855, DOI: >10.1021/j100203a050.
  116. Exner, K.; Schleyer, P. v. R. "Theoretical Bond Energies: A Critical Evaluation," J. Phys. Chem. A. 2001, 105, 3407-3416, DOI: 10.1021/jp004193o.
  117. Grimme, S. "Theoretical Bond and Strain Energies of Molecules Derived from Properties of the Charge Density at Bond Critical Points," J. Am. Chem. Soc. 1996, 118, 1529-1534, DOI: 10.1021/ja9532751.
  118. Johnson, W. T. G.; Borden, W. T. "Why Are Methylenecyclopropane and 1-Methylcylopropene More "Strained" than Methylcyclopropane?," J. Am. Chem. Soc 1997, 119, 5930-5933, DOI: 10.1021/ja9638061.
  119. Bach, R. D.; Dmitrenko, O. "The Effect of Substitutents on the Strain Energies of Small Ring Compounds," J. Org. Chem. 2002, 67, 2588-2599, DOI: 10.1021/jo016241m.
  120. Bach, R. D.; Dmitrenko, O. "Strain Energy of Small Ring Hydrocarbons. Influence of C-H Bond Dissociation Energies," J. Am. Chem. Soc. 2004, 126, 4444-4452, DOI: 10.1021/ja036309a.
  121. Dewar, M. J. S. "σ-Conjugation and σ-Aromaticity," Bull. Soc. Chim. Belg. 1979, 88, 957-967.
  122. Dewar, M. J. S. "Chemical Implications of σ-Conjugation," J. Am. Chem. Soc. 1984, 106, 669-682, DOI: 10.1021/ja00315a036.
  123. Kraka, E.; Cremer, D. "Theoretical determination of molecular structure and conformation. 15. Three-membered rings: bent bonds, ring strain, and surface delocalization," J. Am. Chem. Soc. 1985, 107, 3800-3810, DOI: 10.1021/ja00299a009.
  124. Moran, D.; Manoharan, M.; Heine, T.; Schleyer, P. v. R. "σ-Antiaromaticity in Cyclobutane, Cubane, and Other Molecules with Saturated Four-Membered Rings," Org. Lett. 2003, 5, 23-26, DOI: 10.1021/ol027159w.
  125. Fowler, P. W.; Baker, J.; Mark Lillington, M. "The Ring Current in Cyclopropane " Theor. Chem. Acta 2007, 118, 123-127, DOI: 10.1007/s00214-007-0253-2.
  126. Schleyer, P. v. R.; Jiao, H. "What is Aromaticity?," Pure. Appl. Chem. 1996, 68, 209-218, DOI: 10.1351/pac199668020209.
  127. Krygowski, T. M.; Cyrañski, M. K.; Czarnocki, Z.; Häfelinger, G.; Katritzky, A. R. "Aromaticity: a Theoretical Concept of Immense Practical Importance," Tetrahedron 2000, 56, 1783-1796, DOI: 10.1016/S0040-4020(99)00979-5.
  128. Stanger, A. "What is... aromaticity: a critique of the concept of aromaticity-can it really be defined?," Chem. Commun. 2009, 1939-1947, DOI: 10.1039/B816811C.
  129. Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; John Wiley & Sons: New York, 1994.
  130. Schleyer, P. v. R. "Aromaticity," Chem Rev. 2001, 101, 1115-1566, DOI: 10.1021/cr0103221.
  131. Cyranski, M. K. "Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies," Chem. Rev. 2005, 105, 3773 - 3811, DOI: 10.1021/cr0300845.
  132. Cyranski, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. "Facts and Artifacts about Aromatic Stability Estimation," Tetrahedron 2003, 59, 1657-1665, DOI: 10.1016/S0040-4020(03)00137-6.
  133. Hedberg, L.; Hedberg, K.; Cheng, P.-C.; Scott, L. T. "Gas-Phase Molecular Structure of Corannulene, C20H10. An Electron-Diffraction Study Augmented by ab Initio and Normal Coordinate Calculations," J. Phys. Chem. A 2000, 104, 7689-7694, DOI: 10.1021/jp0015527.
  134. Dobrowolski, M. A.; Ciesielski, A.; Cyranski, M. K. "On the aromatic stabilization of corannulene and coronene," Phys. Chem. Chem. Phys. 2011, 13, 20557-20563, DOI: 10.1039/C1CP21994D.
  135. Choi, C. H.; Kertesz, M. "Bond Length Alternation and Aromaticity in Large Annulenes," J. Chem. Phys. 1998, 108, 6681-6688, DOI: 10.102110.1063/1.476083.
  136. Aromaticity, Pseudo-aromaticiy, Anti-aromaticity, Proceedings of an International Symposium; Bergmann, E. D.; Pullman, B., Eds.; Israel Academy of Sciences and Humanities: Jerusalem, 1971; Vol. p. 33 see the following exchange:
    E. Heilbronner: "Now could you point out a molecule, except benzene, which classifies as 'aromatic'?"
    B. Binsch: "Benzene is a perfect example!"
    E. Heilbronner: "Name a second one."
    B. Binsch: "It is, of course, a question of degree."
  137. Katritzky, A. R.; Barczynski, P.; Musumarra, G.; Pisano, D.; Szafran, M. "Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles," J. Am. Chem. Soc. 1989, 111, 7-15, DOI: 10.1021/ja00183a002.
  138. Jug, K.; Koester, A. M. "Aromaticity as a Multi-Dimensional Phenomenon," J. Phys. Org. Chem. 1991, 4, 163-169, DOI: 10.1002/poc.610040307.
  139. Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B. "Aromaticity and Antiaromaticity in Five-Membered C4H4X Ring Systems: Classical and Magnetic Concepts May Not Be Orthogonal," Angew. Chem. Int. Ed. Engl. 1995, 34, 337-340, DOI: 10.1002/anie.199503371.
  140. Katritzky, A. R.; Karelson, M.; Sild, S.; Krygowski, T. M.; Jug, K. "Aromaticity as a Quantitative Concept. 7. Aromaticity Reaffirmed as a Multidimensional Characteristic," J. Org. Chem. 1998, 63, 5228-5231, DOI: 10.1021/jo970939b.
  141. Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. "To What Extent Can Aromaticity Be Defined Uniquely?," J. Org. Chem. 2002, 67, 1333-1338, DOI: 10.1021/jo016255s.
  142. Moran, D.; Simmonett, A. C.; Leach, F. E.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F., III "Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar," J. Am. Chem. Soc. 2006, 128, 9342-9343, DOI: 10.1021/ja0630285.
  143. Baldridge, K. K.; Siegel, J. S. "Stabilization of Benzene Versus Oligoacetylenes: Not Another Scale for Aromaticity," J. Phys. Org. Chem. 2004, 17, 740-742, DOI: 10.1002/poc.819.
  144. Roberts, J. D.; Streitwieser, A. J.; Regan, C. M. "Small-Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-Ring Hydrocarbons and Free Radicals," J. Am. Chem. Soc. 1952, 74, 4579-4582, DOI: 10.1021/ja01138a038.
  145. Schaad, L. J.; Hess, B. A., Jr. "Dewar Resonance Energy," Chem. Rev. 2001, 101, 1465-1476, DOI: 10.1021/cr9903609.
  146. Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.
  147. Wheland, G. W. The Theory of Resonance; J. Wiley: New York, 1944.
  148. Mo, Y.; Schleyer, P. v. R. "An Energetic Measure of Aromaticity and Antiaromaticity Based on the Pauling-Wheland Resonance Energies," Chem. Eur. J. 2006, 12, 2009-2020, DOI: 10.1002/chem.200500376.
  149. Dewar, M. J. S.; De Llano, C. "Ground States of Conjugated Molecules. XI. Improved Treatment of Hydrocarbons," J. Am. Chem. Soc. 1969, 91, 789-795, DOI: 10.1021/ja01032a001.
  150. Schleyer, P. v. R.; Manoharan, M.; Jiao, H.; Stahl, F. "The Acenes: Is There a Relationship between Aromatic Stabilization and Reactivity?," Org. Lett. 2001, 3, 3643-3646, DOI: 10.1021/ol016553b.
  151. Hess, B. A., Jr.; Schaad, L. J. "Ab Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene," J. Am. Chem. Soc. 1983, 105, 7500-7505, DOI: 10.1021/ja00364a600.
  152. Schleyer, P. v. R.; Puhlhofer, F. "Recommendations for the Evaluation of Aromatic Stabilization Energies," Org. Lett. 2002, 4, 2873-2876, DOI: 10.1021/ol0261332.
  153. Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.; Malkina, O. "An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties," J. Am. Chem. Soc. 1997, 119, 12669-12670-, DOI: 10.1021/ja9719135.
  154. Gomes, J. A. N. F.; Mallion, R. B. "Aromaticity and Ring Currents," Chem. Rev. 2001, 101, 1349 - 1384, DOI: 10.1021/cr990323h.
  155. Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. "Diamagnetic Susceptibility Exaltation in Hydrocarbons," J. Am. Chem. Soc. 1969, 91, 1991-1998, DOI: 10.1021/ja01036a022.
  156. Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2, p 167-206.
  157. Jackman, L. M.; Sondheimer, F.; Amiel, Y.; Ben-Efraim, D. A.; Gaoni, Y.; Wolovsky, R.; Bothner-By, A. A. "The Nuclear Magnetic Resonance Spectroscopy of a Series of Annulenes and Dehydro-annulenes," J. Am. Chem. Soc. 1962, 84, 4307-4312, DOI: 10.1021/ja00881a022.
  158. Stevenson, C. D.; Kurth, T. L. "Isotopic Perturbations in Aromatic Character and New Closely Related Conformers Found in [16]- and [18]Annulene," J. Am. Chem. Soc. 2000, 122, 722-723, DOI: 10.1021/ja993604f.
  159. Wannere, C. S.; Corminboeuf, C.; Allen, W. D.; Schaefer, H. F., III; Schleyer, P. v. R. "Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators," Org. Lett. 2005, 7, 1457-1460, DOI: 10.1021/ol050118q.
  160. Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Viglione, R. G.; Ferraro, M. B.; Zanasi, R.; Lazzeretti, P. "Why Downfield Proton Chemical Shifts Are Not Reliable Aromaticity Indicators," Org. Lett. 2005, 7, 3457-3460, DOI: 10.1021/ol051103v.
  161. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. "Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe," J. Am. Chem. Soc. 1996, 118, 6317-6318, DOI: 10.1021/ja960582d.
  162. Jiao, H.; Schleyer, P. v. R.; Mo, Y.; McAllister, M. A.; Tidwell, T. T. "Magnetic Evidence for the Aromaticity and Antiaromaticity of Charged Fluorenyl, Indenyl, and Cyclopentadienyl Systems," J. Am. Chem. Soc. 1997, 119, 7075-7083, DOI: 10.1021/ja970380x.
  163. Williams, R. V.; Armantrout, J. R.; Twamley, B.; Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S. "A Theoretical and Experimental Scale of Aromaticity. The First Nucleus-Independent Chemical Shifts (NICS) Study of the Dimethyldihydropyrene Nucleus," J. Am. Chem. Soc. 2002, 124, 13495-13505, DOI: 10.1021/ja020595t.
  164. Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.; Kiran, B.; Jiao, H.; Puchta, R.; van Eikema Hommes, N. J. R. "Dissected Nucleus-Independent Chemical Shift Analysis of -Aromaticity and Antiaromaticity," Org. Lett. 2001, 3, 2465-2468, DOI: 10.1021/ol016217v.
  165. Stanger, A. "Nucleus-Independent Chemical Shifts (NICS): Distance Dependence and Revised Criteria for Aromaticity and Antiaromaticity," J. Org. Chem. 2006, 71, 883-893, DOI: 10.1021/jo051746o.
  166. Klod, S.; Kleinpeter, E. "Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes - application in conformational and configurational analysis," Chem. Soc., Perkin Trans. 2 2001, 1893-1898, DOI: 10.1039/b009809o.
  167. Pople , J. A. "Proton Magnetic Resonance of Hydrocarbons," J. Chem. Phys. 1956, 24, 1111, DOI: 10.1063/1.1742701.
  168. Viglione, R. G.; Zanasi, R.; Lazzeretti, P. "Are Ring Currents Still Useful to Rationalize the Benzene Proton Magnetic Shielding?," Org. Lett. 2004, 6, 2265-2267, DOI: 10.1021/ol049200w.
  169. Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. "Which NICS Aromaticity Index for Planar π Rings Is Best?," Org. Lett. 2006, 8, 863-866, DOI: 10.1021/ol0529546.
  170. Herges, R.; Jiao, H.; Schleyer, P. v. R. "Magnetic Properties of Aromatic Transition States: The Diels-Alder Reactions," Angew. Chem. Int. Ed. Engl. 1994, 33, 1376-1378, DOI: 10.1002/anie.199413761.
  171. Jiao, H.; Schleyer, P. v. R. "The Cope Rearrangement Transition Structure is not Diradicaloid, but is it Aromatic?," Angew. Chem. Int. Ed. Engl. 1995, 34, 334-337, DOI: 10.1002/anie.199503341.
  172. Cabaleiro-Lago, E. M.; Rodriguez-Otero, J.; Varela-Varela, S. M.; Pena-Gallego, A.; Hermida-Ramon, J. M. "Are Electrocyclization Reactions of (3Z)-1,3,5-Hexatrienone and Nitrogen Derivatives Pseudopericyclic? A DFT Study," J. Org. Chem. 2005, 70, 3921-3928, DOI: 10.1021/jo0477695.
  173. Martin-Santamaria, S.; Lavan, B.; Rzepa, H. S. "Hückel and Möbius Aromaticity and Trimerous Transition State Behaviour in the Pericyclic Reactions of [10], [14], [16] and [18]Annulenes," J. Chem. Soc., Perkin Trans. 2 2000, 1415-1417, DOI: 10.1039/b002082f.
  174. Levy, A.; Rakowitz, A.; Mills, N. S. "Dications of Fluorenylidenes. The Effect of Substituent Electronegativity and Position on the Antiaromaticity of Substituted Tetrabenzo[5.5]fulvalene Dications," J. Org. Chem. 2003, 68, 3990-3998, DOI: 10.1021/jo026924h.
  175. Mills, N. S.; Levy, A.; Plummer, B. F. "Antiaromaticity in Fluorenylidene Dications. Experimental and Theoretical Evidence for the Relationship between the HOMO/LUMO Gap and Antiaromaticity," J. Org. Chem. 2004, 69, 6623-6633, DOI: 10.1021/jo0499266.
  176. Piekarski, A. M.; Mills, N. S.; Yousef, A. "Dianion and Dication of Tetrabenzo[5.7]fulvalene. Greater Antiaromaticity than Aromaticity in Comparable Systems," J. Am. Chem. Soc. 2008, 130, 14883-14890, DOI: 10.1021/ja8042323.
  177. Dinadayalane, T. C.; Deepa, S.; Reddy, A. S.; Sastry, G. N. "Density Functional Theory Study on the Effect of Substitution and Ring Annelation to the Rim of Corannulene," J. Org. Chem. 2004, 69, 8111-8114, DOI: 10.1021/jo048850a.
  178. Schulman, J. M.; Disch, R. L. "Properties of Phenylene-Based Hydrocarbon Bowls and Archimedene," J. Phys. Chem. A 2005, 109, 6947-6952, DOI: 10.1021/jp058088w.
  179. Kavitha, K.; Manoharan, M.; Venuvanalingam, P. "1,3-Dipolar Reactions Involving Corannulene: How Does Its Rim and Spoke Addition Vary?," J. Org. Chem. 2005, 70, 2528-2536, DOI: 10.1021/jo0480693.
  180. Wu, J. I.; Fernández, I.; Mo, Y.; Schleyer, P. v. R. "Why Cyclooctatetraene Is Highly Stabilized: The Importance of "Two-Way" (Double) Hyperconjugation," J. Chem. Theor. Comput. 2012, 8, 1280-1287, DOI: 10.1021/ct3000553.
  181. Nishinaga, T.; Uto, T.; Inoue, R.; Matsuura, A.; Treitel, N.; Rabinovitz, M.; Komatsu, K. "Antiaromaticity and Reactivity of a Planar Cyclooctatetraene Fully Annelated with Bicyclo[2.1.1]hexane Units," Chem. Eur. J. 2008, 14, 2067-2074, DOI: 10.1002/chem.200701405.
  182. Ohmae, T.; Nishinaga, T.; Wu, M.; Iyoda, M. "Cyclic Tetrathiophenes Planarized by Silicon and Sulfur Bridges Bearing Antiaromatic Cyclooctatetraene Core: Syntheses, Structures, and Properties," J. Am. Chem. Soc. 2009, 132, 1066-1074, DOI: 10.1021/ja908161r.
  183. Masamune, S.; Hojo, K.; Hojo, K.; Bigam, G.; Rabenstein, D. L. "Geometry of [10]annulenes," J. Am. Chem. Soc. 1971, 93, 4966-4968, DOI: 10.1021/ja00748a083.
  184. Xie, Y.; Schaefer, H. F., III; Liang, G.; Bowen, J. P. "[10]Annulene: The Wealth of Energetically Low-Lying Structural Isomers of the Same (CH)10 Connectivity," J. Am. Chem. Soc. 1994, 116, 1442-1449, DOI: 10.1021/ja00083a032.
  185. Sulzbach, H. M.; Schleyer, P. v. R.; Jiao, H.; Xie, Y.; Schaefer, H. F., III "A [10]Annulene Isomer May Be Aromatic, After All!," J. Am. Chem. Soc. 1995, 117, 1369-1373, DOI: 10.1021/ja00109a021.
  186. King, R. A.; Crawford, T. D.; Stanton, J. F.; Schaefer, H. F., III "Conformations of [10]Annulene: More Bad News for Density Functional Theory and Second-Order Perturbation Theory," J. Am. Chem. Soc. 1999, 121, 10788-10793, DOI: 10.1021/ja991429x.
  187. Sulzbach, H. M.; Schaefer, H. F., III; Klopper, W.; Luthi, H.-P. "Exploring the Boundary between Aromatic and Olefinic Character: Bad News for Second-Order Perturbation Theory and Density Functional Schemes," J. Am. Chem. Soc. 1996, 118, 3519-3520, DOI: 10.1021/ja9538400.
  188. Wannere, C. S.; Sattelmeyer, K. W.; Schaefer, H. F., III, ; Schleyer, P. v. R. "Aromaticity: The Alternating CC Bond Length Structures of [14]-, [18]-, and [22]Annulene," Angew. Chem. Int. Ed. 2004, 43, 4200-4206, DOI: 10.1002/anie.200454188.
  189. Castro, C.; Karney, W. L.; McShane, C. M.; Pemberton, R. P. "[10]Annulene: Bond Shifting and Conformational Mechanisms for Automerization," J. Org. Chem. 2006, 71, DOI: 10.1021/jo0521450.
  190. Price, D. R.; Stanton, J. F. "Computational Study of [10]Annulene NMR Spectra," Org. Lett. 2002, 4, 2809-2811, DOI: 10.1021/ol0200450.
  191. Navarro-Vázquez, A.; Schreiner, P. R. "1,2-Didehydro[10]annulenes: Structures, Aromaticity, and Cyclizations," J. Am. Chem. Soc. 2005, 127, 8150 - 8159, DOI: 10.1021/ja0507968.
  192. Wannere, C. S.; Schleyer, P. v. R. "How Aromatic Are Large (4n + 2) Annulenes?," Org. Lett. 2003, 5, 865-868, DOI: 10.1021/ol027571b.
  193. Longuet-Higgins, H. C.; Salem, L. "Alternation of Bond Lengths in Long Conjugated Chain Molecules," Proc. Roy. Soc. London 1959, A251, 172-185, DOI: 10.1098/rspa.1959.0100.
  194. Chiang, C. C.; Paul, I. C. "Crystal and Molecular Structure of [14]Annulene," J. Am. Chem. Soc. 1972, 94, 4741-4743, DOI: 10.1021/ja00768a058.
  195. Bregman, J.; Hirshfeld, F. L.; Rabinovich, D.; Schmidt, G. M. J. "The Crystal Structure of [18]Annulene. I. X-ray study," Acta Cryst. 1965, 19, 227-234, DOI: 10.1107/S0365110X65003158.
  196. Gorter, S.; Rutten-Keulemans, E.; Krever, M.; Romers, C.; Cruickshank, D. W. J. "[18]-Annulene, C18H18, Structure, Disorder and Hueckel's 4n + 2 rule," Acta Crystallogr. B 1995, 51, 1036-1045, DOI: 10.1107/S0108768195004927.
  197. Choi, C. H.; Kertesz, M.; Karpfen, A. "Do Localized Structures of [14]- and [18]Annulenes Exist?," J. Am. Chem. Soc. 1997, 119, 11994-11995, DOI: 10.1021/ja971035a.
  198. Baldridge, K. K.; Siegel, J. S. "Ab Initio Density Funtional vs Hartree Fock Predictions for the Structure of [18]Annulene: Evidence for Bond Localization and Diminished Ring Currents in Bicycloannelated [18]Annulenes," Angew. Chem. Int. Ed. Engl 1997, 36, 745-748, DOI: 10.1002/anie.199707451.
  199. Oth, J. F. M. "Conformational Mobility and Fast Bond Shift in the Annulenes," Pure Appl. Chem. 1971, 25, 573-622, DOI: 10.1351/pac197125030573.
  200. Heilbronner, E. "Hückel Molecular Orbitals of Möt:bius-Type Conformations of Annulenes," Tetrahedron Lett. 1964, 5, 1923-1928, DOI: 10.1016/S0040-4039(01)89474-0.
  201. Rzepa, H. S. "Möbius Aromaticity and Delocalization," Chem. Rev. 2005, 105, 3697 - 3715, DOI: 10.1021/cr030092l.
  202. Castro, C.; Isborn, C. M.; Karney, W. L.; Mauksch, M.; Schleyer, P. v. R. "Aromaticity with a Twist: Möbius [4n]Annulenes," Org. Lett. 2002, 4, 3431-3434, DOI: 10.1021/ol026610g.
  203. Ajami, D.; Hess, K.; Köhler, F.; Näther, C.; Oeckler, O.; Simon, A.; Yamamoto, C.; Okamoto, Y.; Herges, R. "Synthesis and Properties of the First Möbius Annulenes," Chem. Eur. J. 2006, 12, 5434-5445, DOI: 10.1002/chem.200600215.
  204. Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. "Synthesis of a Möbius Aromatic Hydrocarbon," Nature 2003, 426, 819-821, DOI: 10.1038/nature02224.
  205. Wannere, C. S.; Moran, D.; Allinger, N. L.; Hess, B. A., Jr.; Schaad, L. J.; Schleyer, P. v. R. "On the Stability of Large [4n]Annulenes," Org. Lett. 2003, 5, 2983-2986, DOI: 10.1021/ol034979f.
  206. Castro, C.; Chen, Z.; Wannere, C. S.; Jiao, H.; Karney, W. L.; Mauksch, M.; Puchta, R.; Hommes, N. J. R. v. E.; Schleyer, P. v. R. "Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius [4n]Annulene Aromaticity," J. Am. Chem. Soc. 2005, 127, 2425-2432, DOI: 10.1021/ja0458165.
  207. Clar, E. The Aromatic Sextet; Wiley: London, 1972.
  208. Shimizu, S.; Aratani, N.; Osuka, A. "meso-Trifluoromethyl-Substituted Expanded Porphyrins," Chem. Eur. J. 2006, 12, 4909-4918, DOI: 10.1002/chem.200600158.
  209. Rzepa, H. S. "Lemniscular Hexaphyrins as Examples of Aromatic and Antiaromatic Double-Twist Mobius Molecules," Org. Lett. 2008, 10, 949-952, DOI: 10.1021/ol703129z.
  210. Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; Shibata, N.; Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park , J. K.; Kim , D.; Osuka, A. "Metalation of Expanded Porphyrins: A Chemical Trigger Used To Produce Molecular Twisting and Möbius Aromaticity," Angew. Chem. Int. Ed. 2008, 47, 681-684, DOI: 10.1002/anie.200704407.
  211. Tokuji, S.; Shin, J.-Y.; Kim, K. S.; Lim, J. M.; Youfu, K.; Saito, S.; Kim, D.; Osuka, A. "Facile Formation of a Benzopyrane-Fused [28]Hexaphyrin That Exhibits Distinct Mobius Aromaticity," J. Am. Chem. Soc. 2009, 131, 7240-7241, DOI: 10.1021/ja902836x.
  212. Castro, C.; Karney, W. L.; Valencia, M. A.; Vu, C. M. H.; Pemberton, R. P. "Möbius Aromaticity in [12]Annulene: Cis-Trans Isomerization via Twist-Coupled Bond Shifting," J. Am. Chem. Soc. 2005, 127, 9704-9705, DOI: 10.1021/ja052447j.
  213. Moll, J. F.; Pemberton, R. P.; Gutierrez, M. G.; Castro, C.; Karney, W. L. "Configuration Change in [14]Annulene Requires Möbius Antiaromatic Bond Shifting," J. Am. Chem. Soc. 2006, 129, 274-275, DOI: 10.1021/ja0678469.
  214. Schleyer, P. v. R.; Barborak, J. C.; Su, T. M.; Boche, G.; Schneider, G. "Thermal bicyclo[6.1.0]nonatrienyl chloride-dihydroindenyl chloride rearrangement," J. Am. Chem. Soc. 1971, 93, 279-281, DOI: 10.1021/ja00730a063.
  215. Yakali, E. "Genesis and bond relocation of the cyclononatetraenyl cation and related compounds," Dissertation, Syracuse University, 1973.
  216. Mauksch, M.; Gogonea, V.; Jiao, H.; Schleyer, P. v. R. "Monocyclic (CH)9+ - A Heilbronner Möbius Aromatic System Revealed," Angew. Chem. Int. Ed. 1998, 37, 2395-2397, DOI: 10.1002/(SICI)1521-3773(19980918)37:17<2395::AID-ANIE2395>3.0.CO;2-W.
  217. Bucher, G.; Grimme, S.; Huenerbein, R.; Auer, A. A.; Mucke, E.; Köhler, F.; Siegwarth, J.; Herges, R. "Is the [9]Annulene Cation a Möbius Annulene?," Angew. Chem. Int. Ed. 2009, 48, 9971-9974, DOI: 10.1002/anie.200900886.
  218. Mucke, E.-K.; Kohler, F.; Herges, R. "The [13]Annulene Cation Is a Stable Mobius Annulene Cation," Org. Lett. 2010, 12, 1708-1711, DOI: 10.1021/ol1002384.
  219. Mucke, E.-K.; Schönborn, B.; Köhler, F.; Herges, R. "Stability and Aromaticity of Charged Möbius[4n]Annulenes," J. Org. Chem. 2010, 76, 35-41, DOI: 10.1021/jo100798e.
  220. Fowler, P. W.; Rzepa, H. S. "Aromaticity rules for cycles with arbitrary numbers of half-twists," Phys. Chem. Chem. Phys. 2006, 8, 1775-1777, DOI: 10.1039/b601655c.
  221. Wannere, C. S.; Rzepa, H. S.; Rinderspacher, B. C.; Paul, A.; Allan, C. S. M.; Schaefer III, H. F.; Schleyer, P. v. R. "The Geometry and Electronic Topology of Higher-Order Charged Mobius Annulenes," J. Phys. Chem. A 2009, 113, 11619-11629, DOI: 10.1021/jp902176a.
  222. Rzepa, H. S. "A Double-Twist Möbius-Aromatic Conformation of [14]Annulene," Org. Lett. 2005, 7, 4637-4639, DOI: 10.1021/ol0518333.
  223. Okoronkwo, T.; Nguyen, P. T.; Castro, C.; Karney, W. L. "[14]Annulene: Cis/Trans Isomerization via Two-Twist and Nondegenerate Planar Bond Shifting and Möbius Conformational Minima," Org. Lett. 2010, 12, 972-975, DOI: 10.1021/ol100025j.
  224. Mohebbi, A.; Mucke, E. K.; Schaller, G.; Köhler, F.; Sönnichsen, F.; Ernst, L.; N�ther, C.; Herges, R. "Singly and Doubly Twisted [36]Annulenes: Synthesis and Calculations," Chem. Eur. J. 2010, 16, 7767-7772, DOI: 10.1002/chem.201000277.
  225. Mills, W. H.; Nixon, I. G. "Stereochemical Influences on Aromatic Substitution. Substitution Derivatives of 5-Hydroxyhydrindene," J. Chem. Soc. 1930, 2510-2524, DOI: 10.1039/jr9300002510.
  226. Siegel, J. S. "Mills - Nixon Effect: Wherefore Art Thou?," Angew. Chem. Int. Ed. Engl. 1994, 33, 1721-1723, DOI: 10.1002/anie.199417211.
  227. Stanger, A. "Strain-Induced Bond Localization. The Heteroatom Case," J. Am. Chem. Soc. 1998, 120, 12034-12040, DOI: 10.1021/ja9819662.
  228. Stanger, A. "Is the Mills-Nixon Effect Real?," J. Am. Chem. Soc. 1991, 113, 8277-8280, DOI: 10.1021/ja00022a012.
  229. Baldridge, K. K.; Siegel, J. S. "Bond Alternation in Triannelated Benzenes: Dissection of Cyclic π from Mills-Nixon Effects," J. Am. Chem. Soc. 1992, 114, 9583-9587, DOI: 10.1021/ja00050a043.
  230. Sakai, S. "Theoretical Study on the Aromaticity of Benzenes Annelated to Small Rings," J. Phys. Chem. A. 2002, 106, 11526-11532, DOI: 10.1021/jp021722a.
  231. Bachrach, S. M. "Aromaticity of Annulated Benzene, Pyridine and Phosphabenzene," J. Organomet. Chem. 2002, 643-644, 39-46, DOI: 10.1016/S0022-328X(01)01144-5.
  232. Boese, R.; Bläser, D.; Billups, W. E.; Haley, M. M.; Maulitz, A. H.; Mohler, D. L.; Vollhardt, K. P. C. "The Effect of Fusion of Angular Strained Rings on Benzene: Crystal Structures of 1,2-Dihydrocyclobuta[a]cyclopropa[c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]-, 1,2,3,4-Tetrahydrodicyclobuta[a,c]cyclopropa[e]-, and 1,2,3,4,5,6-Hexahydrotricyclobuta[a,c,e]benzene," Angew. Chem. Int. Ed. Engl. 1994, 33, 313-317, DOI: 10.1002/anie.199403131.
  233. Mo, O.; Yanez, M.; Eckert-Maksic, M.; Maksic, Z. B. "Bent Bonds in Benzocyclopropenes and Their Fluorinated Derivatives," J. Org. Chem. 1995, 60, 1638-1646, DOI: 10.1021/jo00111a023.
  234. Bürgi, H.-B.; Baldridge, K. K.; Hardcastle, K.; Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J. "X-Ray Diffraction Evidence for a Cyclohexatriene Motif in the Molecular Structure of Tris(bicyclo[2.1.1]hexeno)benzene: Bond Alternation after the Refutation of the Mills-Nixon Theory," Angew. Chem. Int. Ed. Engl. 1995, 34, 1454-1456, DOI: 10.1002/anie.199514541.
  235. Diercks, R.; Vollhardt, K. P. C. "Tris(benzocyclobutadieno)benzene, the Triangular [4]Phenylene with a Completely Bond-Fixed Cyclohexatriene Ring: Cobalt-catalyzed Synthesis from Hexaethynylbenzene and Thermal Ring Opening to 1,2:5,6:9,10-Tribenzo-3,4,7,8,11,12-hexadehydro[12]annulene," J. Am. Chem. Soc. 1986, 108, 3150-3152, DOI: 10.1021/ja00271a080.
  236. Boese, R.; Bläser, D. "Structures and Deformation Electron Densities of 1,2-Dihydrocyclobutabenzene and 1,2,4,5-Tetrahydrodicyclobuta[a,d]benzene," Angew. Chem. Int. Ed. Engl. 1988, 27, 304-305, DOI: 10.1002/anie.198803041.
  237. Alkorta, I.; Elguero, J. "Can Aromaticity be Described with a Single Parameter? Benzene vs. Cyclohexatriene," New J. Chem. 1999, 23, 951-954, DOI: 10.1039/a904537f.
  238. Bao, X.; Hrovat, D.; Borden, W. "The effects of orbital interactions on the geometries of some annelated benzenes," Theor. Chem. Acc. 2011, 130, 261-268, DOI: 10.1007/s00214-011-0970-4.
  239. Schulman, J. M.; Disch, R. L.; Jiao, H.; Schleyer, P. v. R. "Chemical Shifts of the [N]Phenylenes and Related Compounds," J. Phys. Chem. A 1998, 102, 8051-8055, DOI: 10.1021/jp982271q.
  240. Beckhaus, H.-D.; Faust, R.; Matzger, A. J.; Mohler, D. L.; Rogers, D. W.; Ruchardt, C.; Sawhney, A. K.; Verevkin, S. P.; Vollhardt, K. P. C.; Wolff, S. "The Heat of Hydrogenation of (a) Cyclohexatriene," J. Am. Chem. Soc. 2000, 122, 7819-7820, DOI: 10.1021/ja001274p.
  241. Hopf, H. Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives; Wiley-VCH: Weinheim, Germany, 2000.
  242. Bodwell, G. J.; Fleming, J. J.; Mannion, M. R.; Miller, D. O. "Nonplanar Aromatic Compounds. 3. A Proposed New Strategy for the Synthesis of Buckybowls. Synthesis, Structure and Reactions of [7]-, [8]- and [9](2,7)Pyrenophanes," J. Org. Chem. 2000, 65, 5360-5370, DOI: 10.1021/jo0007027.
  243. Dobrowolski, M. A.; Cyranski, M. K.; Merner, B. L.; Bodwell, G. J.; Wu, J. I.; Schleyer, P. v. R. "Interplay of π-Electron Delocalization and Strain in [n](2,7)Pyrenophanes," J. Org. Chem. 2008, 73, 8001-8009, DOI: 10.1021/jo8014159.
  244. Swart, M.; van der Wijst, T.; Guerra, C. F.; Bickelhaupt, F. M. " π-π stacking tackled with density functional theory," 2007, 13, 1245-1257, DOI: 10.1007/s00894-007-0239-y.
  245. Hobza, P.; Selzle, H. L.; Schlag, E. W. "Potential Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures:  T-Shaped and Parallel-Displaced," J. Phys. Chem. 1996, 100, 18790-18794, DOI: 10.1021/jp961239y.
  246. Steed, J. M.; Dixon, T. A.; Klemperer, W. "Molecular beam studies of benzene dimer, hexafluorobenzene dimer, and benzene--hexafluorobenzene," J. Chem. Phys 1979, 70, 4940-4946, DOI: 10.1063/1.437383.
  247. Arunan, E.; Gutowsky, H. S. "The rotational spectrum, structure and dynamics of a benzene dimer," J. Chem. Phys 1993, 98, 4294-4296, DOI: 10.1063/1.465035.
  248. Felker, P. M.; Maxton, P. M.; Schaeffer, M. W. "Nonlinear Raman Studies of Weakly Bound Complexes and Clusters in Molecular Beams," Chem. Rev. 1994, 94, 1787-1805, DOI: 10.1021/cr00031a003.
  249. Bornsen, K. O.; Selzle, H. L.; Schlag, E. W. "Spectra of isotopically mixed benzene dimers: Details on the interaction in the vdW bond," J. Chem. Phys 1986, 85, 1726-1732, DOI: 10.1063/1.451173.
  250. Law, K.; Schauer, M.; Bernstein, E. R. "Dimers of aromatic molecules: (Benzene)2, (toluene)2, and benzene--toluene," J. Chem. Phys. 1984, 81, 4871-4882, DOI: 10.1063/1.447514.
  251. Scherzer, W.; Kraetzschmar, O.; Selzle, H. L.; Schlag, E. W. "Structural isomers of the benzene dimer from mass selective hole-burning spectroscopy," Z. Naturforsch. A 1992, 47, 1248-1252.
  252. Grover, J. R.; Walters, E. A.; Hui, E. T. "Dissociation energies of the benzene dimer and dimer cation," J. Phys. Chem. 1987, 91, 3233-3237, DOI: <10.1021/j100296a026.
  253. Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. "Estimates of the Ab Initio Limit for π−π Interactions:  The Benzene Dimer," J. Am. Chem. Soc. 2002, 124, 10887-10893, DOI: 10.1021/ja025896h.
  254. Sinnokrot, M. O.; Sherrill, C. D. "Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer:  Sandwich, T-Shaped, and Parallel-Displaced Configurations," J. Phys. Chem. A 2004, 108, 10200-10207, DOI: 10.1021/jp0469517.
  255. Grimme, S. "Do Special Noncovalent π-π Stacking Interactions Really Exist?," Angew. Che, Int. Ed. 2008, 47, 3430-3434, DOI: 10.1002/anie.200705157.
  256. Sherrill, C. D.; Takatani, T.; Hohenstein, E. G. "An Assessment of Theoretical Methods for Nonbonded Interactions: Comparison to Complete Basis Set Limit Coupled-Cluster Potential Energy Curves for the Benzene Dimer, the Methane Dimer, Benzene−Methane, and Benzene−H2S-," J. Phys. Chem. A 2009, 113, 10146-10159, DOI: 10.1021/jp9034375.
  257. Pitoňák, M.; Neogrády, P.; R̆ezáč, J.; Jurečka, P.; Urban, M.; Hobza, P. "Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations," J. Chem. Theor. Comput. 2008, 4, 1829-1834, DOI: 10.1021/ct800229h.
  258. Hunter, C. A.; Sanders, J. K. M. "The nature of π-π interactions," J. Am. Chem. Soc. 1990, 112, 5525-5534, DOI: 10.1021/ja00170a016.
  259. Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer, T.; Siegel, J. S. "Polar/π interactions between stacked aryls in 1,8-diarylnaphthalenes," J. Am. Chem. Soc. 1992, 114, 5729-5733, DOI: 10.1021/ja00040a036.
  260. Sinnokrot, M. O.; Sherrill, C. D. "Unexpected Substituent Effects in Face-to-Face π-Stacking Interactions," J. Phys. Chem. A 2003, 107, 8377-8379, DOI: 10.1021/jp030880e.
  261. Sinnokrot, M. O.; Sherrill, C. D. "Substituent Effects in π−π Interactions:  Sandwich and T-Shaped Configurations," J. Am. Chem. Soc. 2004, 126, 7690-7697, DOI: 10.1021/ja049434a.
  262. Lee, E. C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K. S. "Understanding of Assembly Phenomena by Aromatic−Aromatic Interactions:  Benzene Dimer and the Substituted Systems," J. Phys. Chem. A 2007, 111, 3446-3457, DOI: 10.1021/jp068635t.
  263. Grimme, S.; Antony, J.; Schwabe, T.; Muck-Lichtenfeld, C. "Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules," Org. Biomol. Chem. 2007, 5, 741-758, DOI: 10.1039/B615319B.
  264. Watt, M.; Hardebeck, L. K. E.; Kirkpatrick, C. C.; Lewis, M. "Face-to-Face Arene−Arene Binding Energies: Dominated by Dispersion but Predicted by Electrostatic and Dispersion/Polarizability Substituent Constants," J. Am. Chem. Soc. 2011, 133, 3854-3862, DOI: 10.1021/ja105975a.
  265. Ringer, A. L.; Sinnokrot, M. O.; Lively, R. P.; Sherrill, C. D. "The Effect of Multiple Substituents on Sandwich and T-Shaped π-π Interactions," Chem. Eur. J. 2006, 12, 3821-3828, DOI: 10.1002/chem.200501316.
  266. Wheeler, S. E. "Local Nature of Substituent Effects in Stacking Interactions," J. Am. Chem. Soc. 2011, 133, 10262-10274, DOI: 10.1021/ja202932e.
  267. Arnstein, S. A.; Sherrill, C. D. "Substituent effects in parallel-displaced <π - π interactions," Phys. Chem. Chem. Phys. 2008, 10, 2646-2655, DOI: 10.1039/B718742D.
  268. Wheeler, S. E.; Houk, K. N. "Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene," J. Am. Chem. Soc. 2008, 130, 10854-10855, DOI: 10.1021/ja802849j.
  269. Ringer, A. L.; Sherrill, C. D. "Substituent Effects in Sandwich Configurations of Multiply Substituted Benzene Dimers Are Not Solely Governed By Electrostatic Control," J. Am. Chem. Soc. 2009, 131, 4574-4575, DOI: 10.1021/ja809720r.
  270. Bloom, J. W. G.; Wheeler, S. E. "Taking the Aromaticity out of Aromatic Interactions," Angew. Che, Int. Ed. 2011, 50, 7847-7849, DOI: 10.1002/anie.201102982.
  271. Martinez, C. R.; Iverson, B. L. "Rethinking the term "pi-stacking"," Chem. Sci. 2012, 3, 2191-2201, DOI: 10.1039/C2SC20045G.