Archive for the 'nanohoops' Category

Nanohoop of linked napthlylene groups

Itami continues to design novel macrocycles containing aromatic rings (see this post). This latest paper reports the synthesis of the first nanohoops containing naphthylenes, namely [9]cyclo-1,4-naphthylene 1.1 Since the macrocycle contains an odd number of naphthylene units, the lowest energy conformation is of C2 symmetry with one of the naphthylene rings in the plane of the macrocycle. (See Figure 1 for the B3LYP/6-31G(d) optimized structure). This conformation gives rise to 27 peaks in the proton NMR, and while the value of the computed chemical shifts differ from the experimental ones by about 0.5 to 1 ppm, their relative ordering is in very nice agreement.

1

2

Figure 1. B3LYP/6-31G(d) optimized geometries of 1 and the racemization transition state 2.

Itami also notes that 1 is chiral and computed the barrier for racemization of 19.9 kcal mol-1¸ through the transition state 2, also shown in Figure 1. This racemization process is compared with the racemization of 1,1’-binaphthyl.

References

(1) Yagi, A.; Segawa, Y.; Itami, K., "Synthesis and Properties of [9]Cyclo-1,4-naphthylene: A π-Extended Carbon Nanoring," J. Am. Chem. Soc. 2012, 134, 2962-2965, DOI: 10.1021/ja300001g

InChIs

1: InChI=1/C90H54/c1-2-20-56-55(19-1)73-37-38-74(56)76-41-42-78(60-24-6-5-23-59(60)76)80-45-46-82(64-28-10-9-27-63(64)80)84-49-50-86(68-32-14-13-31-67(68)84)88-53-54-90(72-36-18-17-35-71(72)88)89-52-51-87(69-33-15-16-34-70(69)89)85-48-47-83(65-29-11-12-30-66(65)85)81-44-43-79(61-25-7-8-26-2(61)81)77-40-39-75(73)57-21-3-4-22-58(57)77/h1-54H/b75-73-,76-74-,79-77-,80-78-,83-81-,84-82-,87-85-,88-86-,90-89-
InChIKey=WUFIQFYLEOBLMY-YNQZQJAJBX

nanohoops Steven Bachrach 27 Mar 2012 No Comments

Fantastic host-guest complex

Check out this an incredibly cool host guest complex: the [10]-cycloparaphenylene ([10]CPP) hoop encapsulating C60!1

(Be sure to click on this image to bring up the 3-D interactive structure – as with all structures in my blog!)

1H and 13C NMR and fluorescence quenching spectrometry clearly indicate that this complex is formed when [10]CPP is mixed with C60 in toluene. In fact, when C60 is mixed with a mixture of nanohoops ranging from 8 to 12 phenyl ring, only the [10]CPP hoop complexes with the fullerene. The experimental binding energy is between 38 and 59 kJ mol-1.

M06-2x/6-31G* computations give the structure shown above. The computed binding energy is 173 kJ mol-1, but the computations do not include solvent. So this overestimation might be somewhat due to the difference in gas phase vs. solution complexation.

(Check out this post for other interesting nanohoops.)

References

(1) Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamago, S., "Size-Selective Encapsulation of C60 by [10]Cycloparaphenylene: Formation of the Shortest Fullerene-Peapod," Angew. Chem. Int. Ed., 2011, 50, 8342-8344, DOI: 10.1002/anie.201102302

nanohoops Steven Bachrach 13 Sep 2011 2 Comments

Chiral Nanohoops

Single-walled carbon nanotubes (SWNT) can be thought of as built from component macrocycles, often called nanohoops. So, for example, cycloparaphenylenes like 1 can be the thought of as the precursor (at least in principle) of armchair SWNTs. To create chiral SWNTs, Itami1 has suggested that cycloparaphenylene-naphthalene (2) and other acene substituted macrocycles would serve as appropriate precursors.


1


2

Itami has synthesized 2 (having 13 phenyl groups and one naphthyl group) and also examined the ring strain energy and racemization energy of a series of these types of compounds at B3LYP/6-31G(d). As might be expected, based on studies of the cycloparaphenylenes themselves,2,3 ring strain energy decreases with increasing size of the macrocycle. So, for example, the macrocycle with one naphthyl group and 5 phenyl rings has a strain energy of 90 kcal mol-1, but the strain is reduced to 40 kcal mol-1 with 13 phenyl rings.

The macrocycle 2 and related structures are chiral, existing in P and M forms. The racemization involves first rotation of the naphthyl group, as shown in Figure 1, with a barrier of about 8 kcal mol-1. The direct product has the opposite stereochemistry but is not in the lowest energy conformation. Rotations of some phenyl groups remains to occur, but these rotations are expected to have a barrier less than that for the rotation of the naphthyl group, based on the previous study of cycloparaphenylenes. Again, the racemization barrier decreases with the size of the macrocycle.

(P)-2

2-TS

(M)-2’

Figure 1. B3LYP/6-31G(d) optimized structures along the racemization pathway of 2.

References

(1) Omachi, H.; Segawa, Y.; Itami, K., "Synthesis and Racemization Process of Chiral Carbon Nanorings: A Step toward the Chemical Synthesis of Chiral Carbon Nanotubes," Org. Lett., 2011, 13, 2480-2483, DOI: 10.1021/ol200730m

(2) Segawa, Y.; Omachi, H.; Itami, K., "Theoretical Studies on the Structures and Strain Energies of Cycloparaphenylenes," Org. Lett., 2010, 12, 2262-2265, DOI: 10.1021/ol1006168

(3) Bachrach, S. M.; Stuck, D., "DFT Study of Cycloparaphenylenes and Heteroatom-Substituted Nanohoops," J. Org. Chem., 2010, 75, 6595-6604, DOI: 10.1021/jo101371m

InChIs

2: InChI=1/C88H58/c1-2-60-4-3-59(1)61-5-9-63(10-6-61)65-13-17-67(18-14-65)69-21-25-71(26-22-69)73-29-33-75(34-30-73)77-37-41-79(42-38-77)81-45-49-83(50-46-81)85-53-55-88-58-86(54-56-87(88)57-85)84-51-47-82(48-52-84)80-43-39-78(40-44-80)76-35-31-74(32-36-76)72-27-23-70(24-28-72)68-19-15-66(16-20-68)64-11-7-62(60)8-12-64/h1-58H/b61-59-,62-60-,65-63-,66-64-,69-67-,70-68-,73-71-,74-72-,77-75-,78-76-,81-79-,82-80-,85-83-,86-84+
InChIKey=VXOGKWSXPGSUSO-ZMOMEJFTBU

nanohoops Steven Bachrach 31 May 2011 9 Comments