Archive for the 'Schreiner' Category


Cyclopropyl rings can be joined together in a spiro fashion to form triangulanes. An interesting topology can be made by joining the rings to form a helical pattern, as shown in the [9]triangulane 1 below. Allen, Quanz, and Schreiner1 have examined the notion of an infinite helical molecule formed in this way.


First, they describe how one can generate the coordinates of such a beast using a closed analytical expression, which is a really nice demonstration of applied geometry. Next, they compute the geometry of a series of [n]triangulanes at M06-2x/6-31G(d). The geometries of [9]triangulane and their largest example, [42]triangulane 2 are shown in Figure 1.



Figure 1. M06-2x/6-31G(d) optimized geometries of 1 and 2.

They show that the geometry of 2 exhibits a structure that has two different C-C distances: one between the spiro carbons, and the second between the spiro carbon and the methylene carbon. The distance between the spiro carbons is rather short (1.458 Å), suggesting that the bonding here is between carbons that are nearly sp2-hybridized.

Lastly, they discuss the thermodynamics of polytriangulane. They employ a series of homodesmotic reactions to attempt to determine the enthalpy for adding another cyclopropyl ring to an extended triangulane. Unfortunately, the computed enthalpy is quite dependent on functional used. Similar attempts to define the strain energy is also flawed in this way. However, regardless of the functional the enthalpy for adding a cyclopropane ring appears to reach an asymptote rather quickly. So, using [3]triangulane they estimate that the strain energy per mole of cyclopropane in triangulane is about 42.7 kcal mol-1, or about 14 kcal mol-1 of strain due to the spiroannulation.


(1) Allen, W. D.; Quanz, H.; Schreiner, P. R. “Polytriangulane,” J. Chem. Theory Comput. 2016, 12, 4707–4716, DOI: 10.1021/acs.jctc.6b00669.


1: InChI=1S/C19H22/c1-2-12(1)5-14(12)7-16(14)9-18(16)11-19(18)10-17(19)8-15(17)6-13(15)3-4-13/h1-11H2/t14-,15-,16-,17-,18-,19-/m0/s1

Schreiner Steven Bachrach 27 Sep 2016 No Comments

Benchmarking Platonic solids and related hydrocarbons

Karton, Schreiner, and Martin have benchmarked the heats of formation of some Platonic Solids and related hydrocarbons.1 The molecules examined are tetrahedrane 1, cubane 2, dodecahedrane 3, trisprismane 4, pentaprismane 5, and octahedrane 6.

The optimized structures (B3LYP-D3BJ/def2-TZVPP) of these compounds are shown in Figure 1.







Figure 1. B3LYP-D3BJ/def2-TZVPP optimized geometries of 1-6.

Using the W1-F12 and W2-F12 composite methods, the estimated the heats of formation of these hydrocarbons are listed in Table 1. Experimental values are available only for 2 and 3; the computed values are off by about 2 kcal mol-1, which the authors argue is just outside the error bars of the computations. They suggest that the experiments might need to be revisited.

Table 1. Heats of formation (kcal mol-1) of 1-6.


ΔHf (comp)

ΔHf (expt)






142.7 ± 1.2



22.4 ± 1










They conclude with a comparison of strain energies computed using isogyric, isodesmic, and homodesmotic reactions with a variety of computational methods. Somewhat disappointingly, most DFT methods have appreciable errors compared with the W1-F12 results, and the errors vary depend on the chemical reaction employed. However, the double hybrid method DSD-PBEP86-D3BJ consistently reproduces the W1-F12 results.


(1)  Karton, A.; Schreiner, P. R.; Martin, J. M. L. "Heats of formation of platonic hydrocarbon cages by means of high-level thermochemical procedures," J. Comput. Chem. 2016, 37, 49-58, DOI: 10.1002/jcc.23963.


1: InChI=1S/C4H4/c1-2-3(1)4(1)2/h1-4H

2: InChI=1S/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H

3: InChI=1S/C20H20/c1-2-5-7-3(1)9-10-4(1)8-6(2)12-11(5)17-13(7)15(9)19-16(10)14(8)18(12)20(17)19/h1-20H

4: InChI=1S/C6H6/c1-2-3(1)6-4(1)5(2)6/h1-6H

5: InChI=1S/C10H10/c1-2-5-3(1)7-8-4(1)6(2)10(8)9(5)7/h1-10H

6: InChI=1S/C12H12/c1-2-4-6-5(11-7(1)10(4)11)3(1)9-8(2)12(6)9/h1-12H

QM Method &Schreiner Steven Bachrach 10 May 2016 No Comments

Dispersion in organic chemistry – a review and another example

The role of dispersion in organic chemistry has been slowly recognized as being quite critical in a variety of systems. I have blogged on this subject many times, discussing new methods for properly treating dispersion within quantum computations along with a variety of molecular systems where dispersion plays a critical role. Schreiner1 has recently published a very nice review of molecular systems where dispersion is a key component towards understanding structure and/or properties.

In a similar vein, Wegner and coworkers have examined the Z to E transition of azobenzene systems (1a-g2a-g) using both experiment and computation.2 They excited the azobenzenes to the Z conformation and then monitored the rate for conversion to the E conformation. In addition they optimized the geometries of the two conformers and the transition state for their interconversion at both B3LYP/6-311G(d,p) and B3LYP-D3/6-311G(d,p). The optimized structure of the t-butyl-substituted system is shown in Figure 1.

a: R=H; b: R=tBu; c: R=Me; d: R=iPr; e: R=Cyclohexyl; f: R=Adamantyl; g: R=Ph




Figure 1. B3LYP-D3/6-311G(d,p) optimized geometries of 1a, 2a, and the TS connecting them.

The experiment finds that the largest activation barriers are for the adamantly 1f and t-butyl 1b azobenzenes, while the lowest barriers are for the parent 1a and methylated 1c azobenzenes.

The trends in these barriers are not reproduced at B3LYP but are reproduced at B3LYP-D3. This suggests that dispersion is playing a role. In the Z conformations, the two phenyl groups are close together, and if appropriately substituted with bulky substituents, contrary to what might be traditionally thought, the steric bulk does not destabilize the Z form but actually serves to increase the dispersion stabilization between these groups. This leads to a higher barrier for conversion from the Z conformer to the E conformer with increasing steric bulk.


(1) Wagner, J. P.; Schreiner, P. R. "London Dispersion in Molecular Chemistry—Reconsidering Steric Effects," Angew. Chem. Int. Ed. 2015, 54, 12274-12296, DOI: 10.1002/anie.201503476.

(2) Schweighauser, L.; Strauss, M. A.; Bellotto, S.; Wegner, H. A. "Attraction or Repulsion? London Dispersion Forces Control Azobenzene Switches," Angew. Chem. Int. Ed. 2015, 54, 13436-13439, DOI: 10.1002/anie.201506126.


1b: InChI=1S/C28H42N2/c1-25(2,3)19-13-20(26(4,5)6)16-23(15-19)29-30-24-17-21(27(7,8)9)14-22(18-24)28(10,11)12/h13-18H,1-12H3/b30-29-

2b: InChI=1S/C28H42N2/c1-25(2,3)19-13-20(26(4,5)6)16-23(15-19)29-30-24-17-21(27(7,8)9)14-22(18-24)28(10,11)12/h13-18H,1-12H3/b30-29+

DFT &Schreiner Steven Bachrach 04 Jan 2016 No Comments

Domino Tunneling

A 2013 study of oxalic acid 1 failed to uncover any tunneling between its conformations,1 despite observation of tunneling in other carboxylic acids (see this post). This was rationalized by computations which suggested rather high rearrangement barriers. Schreiner, Csaszar, and Allen have now re-examined oxalic acid using both experiments and computations and find what they call domino tunneling.2

First, they determined the structures of the three conformations of 1 along with the two transition states interconnecting them using the focal point method. These geometries and relative energies are shown in Figure 1. The barrier for the two rearrangement steps are smaller than previous computations suggest, which suggests that tunneling may be possible.






Figure 1. Geometries of the conformers of 1 and the TS for rearrangement and relative energies (kcal mol-1)

Placing oxalic acid in a neon matrix at 3 K and then exposing it to IR radiation populates the excited 1tTt conformation. This state then decays to both 1cTt and 1cTc, which can only happen through a tunneling process at this very cold temperature. Kinetic analysis indicates that there are two different rates for decay from both 1tTt and 1cTc, with the two rates associated with different types of sites within the matrix.

The intrinsic reaction paths for the two rearrangements: 1tTt1cTt and → 1cTc were obtained at MP2/aug-cc-pVTZ. Numerical integration and the WKB method yield similar half-lives: about 42 h for the first reaction and 23 h for the second reaction. These match up very well with the experimental half-lives from the fast matrix sites of 43 ± 4 h and 30 ± 20 h, respectively. Thus, the two steps take place sequentially via tunneling, like dominos falling over.


(1) Olbert-Majkut, A.; Ahokas, J.; Pettersson, M.; Lundell, J. "Visible Light-Driven Chemistry of Oxalic Acid in Solid Argon, Probed by Raman Spectroscopy," J. Phys. Chem. A 2013, 117, 1492-1502, DOI: 10.1021/jp311749z.

(2) Schreiner, P. R.; Wagner, J. P.; Reisenauer, H. P.; Gerbig, D.; Ley, D.; Sarka, J.; Császár, A. G.; Vaughn, A.; Allen, W. D. "Domino Tunneling," J. Am. Chem. Soc. 2015, 137, 7828-7834, DOI: 10.1021/jacs.5b03322.


1: InChI=1S/C2H2O4/c3-1(4)2(5)6/h(H,3,4)(H,5,6)

focal point &Schreiner &Tunneling Steven Bachrach 11 Aug 2015 1 Comment

Inverted Carbon Atoms

Inverted carbon atoms, where the bonds from a single carbon atom are made to four other atoms which all on one side of a plane, remain a subject of fascination for organic chemists. We simply like to put carbon into unusual environments! Bremer, Fokin, and Schreiner have examined a selection of molecules possessing inverted carbon atoms and highlights some problems both with experiments and computations.1

The prototype of the inverted carbon is propellane 1. The ­Cinv-Cinv bond distance is 1.594 Å as determined in a gas-phase electron diffraction experiment.2 A selection of bond distance computed with various methods is shown in Figure 1. Note that CASPT2/6-31G(d), CCSD(t)/cc-pVTZ and MP2 does a very fine job in predicting the structure. However, a selection of DFT methods predict a distance that is too short, and these methods include functionals that include dispersion corrections or have been designed to account for medium-range electron correlation.















Figure 1. Optimized Structure of 1 at MP2/cc-pVTZ, along with Cinv-Cinv distances (Å) computed with different methods.

Propellanes without an inverted carbon, like 2, are properly described by these DFT methods; the C-C distance predicted by the DFT methods is close to that predicted by the post-HF methods.

The propellane 3 has been referred to many times for its seemingly very long Cinv-Cinv bond: an x-ray study from 1973 indicates it is 1.643 Å.3 However, this distance is computed at MP2/cc-pVTZ to be considerably shorter: 1.571 Å (Figure 2). Bremer, Fokin, and Schreiner resynthesized 3 and conducted a new x-ray study, and find that the Cinv-Cinv distance is 1.5838 Å, in reasonable agreement with the computation. This is yet another example of where computation has pointed towards experimental errors in chemical structure.

Figure 2. MP2/cc-pVTZ optimized structure of 3.

However, DFT methods fail to properly predict the Cinv-Cinv distance in 3. The functionals B3LYP, B3LYP-D3BJ and M06-2x (with the cc-pVTZ basis set) predict a distance of 1.560, 1.555, and 1.545 Å, respectively. Bremer, Folkin and Schreiner did not consider the ωB97X-D functional, so I optimized the structure of 3 at ωB97X-D/cc-pVTZ and the distance is 1.546 Å.

Inverted carbon atoms appear to be a significant challenge for DFT methods.


(1) Bremer, M.; Untenecker, H.; Gunchenko, P. A.; Fokin, A. A.; Schreiner, P. R. "Inverted Carbon Geometries: Challenges to Experiment and Theory," J. Org. Chem. 2015, 80, 6520–6524, DOI: 10.1021/acs.joc.5b00845.

(2) Hedberg, L.; Hedberg, K. "The molecular structure of gaseous [1.1.1]propellane: an electron-diffraction investigation," J. Am. Chem. Soc. 1985, 107, 7257-7260, DOI: 10.1021/ja00311a004.

(3) Gibbons, C. S.; Trotter, J. "Crystal Structure of 1-Cyanotetracyclo[,7.03,7]decane," Can. J. Chem. 1973, 51, 87-91, DOI: 10.1139/v73-012.


1: InChI=1S/C5H6/c1-4-2-5(1,4)3-4/h1-3H2

3: InChI=1S/C11H13N/c12-7-9-1-8-2-10(4-9)6-11(10,3-8)5-9/h8H,1-6H2

Schreiner Steven Bachrach 06 Jul 2015 8 Comments

Structure of carbonic acid

I remain amazed at how regularly I read reports of structure determinations of what seem to be simple molecules, yet these structures have eluded determination for decades if not centuries. An example is the recently determined x-ray crystal structure of L-phenylalanine;1 who knew that growing these crystals would be so difficult?

The paper I want to discuss here is on the gas-phase structure of carbonic acid 1.2 Who would have thought that preparing a pure gas-phase sample would be so difficult? Schreiner and co-workers prepared carbonic acid by high-vacuum flash pyrolysis (HVFP) of di-tert-butyl carbonate, as shown in Scheme 1.

Scheme 1

Carbonic acid can appear in three difference conformations, shown in Figure 1. The two lowest energy conformations are separated by a barrier of 9.5 kcal mol-1 (estimated by focal point energy analysis). These conformations can be interconverted using near IR light. The third conformation is energetically inaccessible.






Figure 1. CCSD(T)/cc-pVQZ optimized structures of 1 (and the focal point relative energies in kcal mol-1) and the CCSD(T)/cc-pVTZ optimized structures of 2.

The structures of these two lowest energy conformations were confirmed by comparing their experimental IR spectra with the computed spectra (CCSD(T)/cc-pVTZ) and their experimental and computed rotational constants.

An interesting added component of this paper is that sublimation of the α- and β-polymorphs of carbonic acid do not produce the same compound. Sublimation of the β-isomorph does produce 1, but sublimation of the α-isomorph produces the methylester of 1, compound 2 (see Figure 1). The structure of 2 is again confirmed by comparison of the experimental and computed IR spectra.


(1) Ihlefeldt, F. S.; Pettersen, F. B.; von Bonin, A.; Zawadzka, M.; Görbitz, C. H. "The Polymorphs of L-Phenylalanine," Angew. Chem. Int. Ed. 2014, 53, 13600–13604, DOI: 10.1002/anie.201406886.

(2) Reisenauer, H. P.; Wagner, J. P.; Schreiner, P. R. "Gas-Phase Preparation of Carbonic Acid and Its Monomethyl Ester," Angew. Chem. Int. Ed. 2014, 53, 11766-11771, DOI: 10.1002/anie.201406969.>


1: InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4)

2: InChI=1S/C2H4O3/c1-5-2(3)4/h1H3,(H,3,4)

Schreiner Steven Bachrach 09 Dec 2014 1 Comment


Twistane 1 is a more strained isomer of adamantane 2. The structure of 1 is shown in Figure 1.


Figure 1. B3LYP/6-31G(d) optimized structure of 1.

Adamantane is the core structure of diamond, which can be made by appending isobutene groups onto adamantane. In an analogous fashion, twistane can be extended in a linear way by appending ethano groups in a 1,4-bridge. Allen, Schreiner, Trauner and co-workers have examined this “polytwistane” using computational techniques.1 They examined a (CH)236 core fragment of polytwistane, with the dangling valences at the edges filled by appending hydrogens, giving a C236H242 compound. This compound was optimized at B3LYP/6-31G(d) and shown in Figure 2a. (Note that I have zoomed in on the structure, but by activating Jmol – click on the figure – you can view the entire compound.) A fascinating feature of polytwistane is its helical structure, which can be readily seen in Figure 2b. A view down the length of this compound, Figure 2c, displays the opening of this helical cylinder; this is a carbon nanotube with an inner diameter of 2.6 Å.




Figure 2. B3LYP/6-31G(d) structure of the C236H242 twistane. (a) A zoomed in look at the structure. This structure links to the Jmol applet allowing interactive viewing of the molecule – you should try this! (b) a side view clearly showing its helical nature. (c) A view down the twistane showing the nanotube structure.

Though the molecule looks quite symmetric, each carbon is involved in three C-C bonds, and each is of slightly different length. The authors go through considerable detail about addressing the symmetry and proper helical coordinates of polytwistane. They also estimate a strain energy of about 1.6 kcal mol-1 per CH unit. This modest strain, they believe, suggests that polytwistanes might be reasonable synthetic targets.


(1) Barua, S. R.; Quanz, H.; Olbrich, M.; Schreiner, P. R.; Trauner, D.; Allen, W. D. "Polytwistane," Chem. Eur. J. 2014, 20, 1638-1645, DOI: 10.1002/chem.201303081.


1: InChI=1S/C10H16/c1-2-8-6-9-3-4-10(8)5-7(1)9/h7-10H,1-6H2

2: InChI=1S/C10H16/c1-7-2-9-4-8(1)5-10(3-7)6-9/h7-10H,1-6H2

Schreiner &twistane Steven Bachrach 20 May 2014 3 Comments

Dispersion – application to cellular membranes

Schreiner provides another beautiful example of the important role that dispersion plays, this time in a biological system.1 The microbe Candidatus Brocadia Anammoxidans oxidizes ammonia with nitrite. This unusual process must be done anaerobically and without allowing toxic side products, like hydrazine to migrate into the cellular environment. So this cell has a very dense membrane surrounding the enzymes that perform the oxidation. This dense membrane is home to some very unusual lipids, such as 1. These lipids contain the ladderane core, a highly strained unit. Schreiner hypothesized that these ladderane groups might pack very well and very tightly due to dispersion.


The geometries of the [2]- through [5]-ladderanes and their dimers were optimized at MP2/aug-cc-pVDZ, and the binding energies corrected for larger basis sets and higher correlation effects. The dimers were oriented in their face-to-face orientation (parallel-displaced dimer, PDD) or edge-to-edge (side-on dimer, SD). Figure 1 shows the optimized structures of the two dimeric forms of [4]-ladderane.



Figure 1. MP2/aug-cc-pVDZ optimized geometries of the dimers of [4]-ladderane in the PDD and SD orientations.

The binding energies of the ladderane dimers, using the extrapolated energies and at B3LYP-D3/6-311+G(d,p), are listed in Table 1. (The performance of the B3LYP-D3 functional is excellent, by the way.)The binding is quite appreciable, greater than 6 kcal mol-1 for both the [4]- and [5]-ladderanes. Interestingly, these binding energies far exceed the binding energies of similarly long alkanes. So, very long alkyl lipid chains would be needed to duplicate the strong binding. Nature appears to have devised a rather remarkable solution to its cellular isolation problem!





























(1) Wagner, J. P.; Schreiner, P. R. "Nature Utilizes Unusual High London Dispersion
Interactions for Compact Membranes Composed of Molecular Ladders," J. Chem. Theor. Comput. 2014, 10, 1353-1358, DOI: 10.1021/ct5000499.


1: InChI=InChI=1S/C20H30O2/c21-15(22)7-5-3-1-2-4-6-11-10-14-16(11)20-18-13-9-8-12(13)17(18)19(14)20/h11-14,16-20H,1-10H2,(H,21,22)/t11-,12-,13+,14-,16+,17+,18-,19-,20+/m0/s1

[2]-ladderane: InChI=1S/C6H10/c1-2-6-4-3-5(1)6/h5-6H,1-4H2/t5-,6+

[3]-ladderane: InChI=1S/C8H12/c1-2-6-5(1)7-3-4-8(6)7/h5-8H,1-4H2/t5-,6+,7+,8-

[4]-ladderane: InChI=1S/C10H14/c1-2-6-5(1)9-7-3-4-8(7)10(6)9/h5-10H,1-4H2/t5-,6+,7+,8-,9-,10+

[5]-ladderane: InChI=1S/C12H16/c1-2-6-5(1)9-10(6)12-8-4-3-7(8)11(9)12/h5-12H,1-4H2/t5-,6+,7-,8+,9+,10-,11-,12+

Schreiner Steven Bachrach 22 Apr 2014 No Comments

Tunneling in t-butylhydroxycarbene

Sorry I missed this paper from much earlier this year – it’s from a journal that’s not on my normal reading list. Anyways, here is another fantastic work from the Schreiner lab demonstrating the concept of tunneling control (see this post).1 They prepare the t-butylhydroxycarbene 1 at low temperature to look for evidence of formation of possible products arising from a [1,2]-hydrogen shift (2), a [1,2]-methyl shift (3) or a [1,3]-CH insertion (4).

Schreiner performed CCSD(T)/cc-pVDZ optimizations of these compounds along with the transition states for the three migrations. The optimized geometries and relative energies are shown in Figure 1. The thermodynamic product is the aldehyde 2 while the kinetic product is the cyclopropane 4, with a barrier of 23.8 kcal mol-1 some 3.5 kcal mol-1 lower than the barrier leading to 2.








Figure 1. CCSD(T)/cc-pVDZ optimized structures of 1-4 and the transition states for the three reaction. Relative energies in kcal mol-1.

At low temperature (11 K), 1 is found to slowly convert into 2 with a half-life of 1.7 h. No other product is observed. Rates for the three reactions were also computed using the Wentzel-Kramers-Brillouin (WKB) method (which Schreiner and Allen have used in all of their previous studies). The predicted rate for the conversion of 1 into 2, which takes place at 11 K solely through a tunneling process, is 0.4h, in quite reasonable agreement with experiment. The predicted rates for the other two potential reactions at 11 K are 1031 and 1040 years.

This is clearly an example of tunneling control. The reaction occurs not across the lowest barrier, but through the narrowest barrier.


(1) Ley, D.; Gerbig, D.; Schreiner, P. R. "Tunneling control of chemical reactions: C-H insertion versus H-tunneling in tert-butylhydroxycarbene," Chem. Sci. 2013, 4, 677-684, DOI: 10.1039/C2SC21555A.


1: InChI=1S/C5H10O/c1-5(2,3)4-6/h6H,1-3H3

2: InChI=1S/C5H10O/c1-5(2,3)4-6/h4H,1-3H3

3: InChI=1S/C5H10O/c1-4(2)5(3)6/h6H,1-3H3

4: InChI=1S/C5H10O/c1-5(2)3-4(5)6/h4,6H,3H2,1-2H3

Schreiner &Tunneling Steven Bachrach 11 Nov 2013 No Comments

Dispersion leads to long C-C bonds

Schreiner has expanded on his previous paper1 regarding alkanes with very long C-C bonds, which I commented upon in this post. He and his colleagues report2 now a series of additional diamond-like and adamantane-like sterically congested alkanes that are stable despite have C-C bonds that are longer that 1.7 Å (such as 1! In addition they examine the structures and rotational barriers using a variety of density functionals.



For 2, the experimental C-C distance is 1.647 Å. A variety of functionals all using the cc-pVDZ basis predict distances that are much too long: B3LYP, B96, B97D, and B3PW91. However, functionals that incorporate some dispersion, either through an explicit dispersion correction (Like B3LYP-D and B2PLYP-D) or with a functional that address mid-range or long range correlation (like M06-2x) or both (like ωB97X-D) all provide very good estimates of this distance.

On the other hand, prediction of the rotational barrier about the central C-C bond of 2 shows different functional performance. The experimental barrier, determined by 1H and 13C NMR is 16.0 ± 1.3 kcal mol-1. M06-2x, ωB97X-D and B3LYP-D, all of which predict the correct C-C distance, overestimate the barrier by 2.5 to 3.5 kcal mol-1, outside of the error range. The functionals that do the best in getting the rotational barrier include B96, B97D and PBE1PBE and B3PW91. Experiments and computations of the rotational barriers of the other sterically congested alkanes reveals some interesting dynamics, particularly that partial rotations are possible by crossing lower barrier and interconverting some conformers, but full rotation requires passage over some very high barriers.

In the closing portion of the paper, they discuss the possibility of very long “bonds”. For example, imagine a large diamond-like fragment. Remove a hydrogen atom from an interior position, forming a radical. Bring two of these radicals together, and their computed attraction is 27 kcal mol-1 despite a separation of the radical centers of more than 4 Å. Is this a “chemical bond”? What else might we want to call it?

A closely related chemical system was the subject of yet another paper3 by Schreiner (this time in collaboration with Grimme) on the hexaphenylethane problem. I missed this paper somehow near
the end of last year, but it is definitely worth taking a look at. (I should point out that this paper was already discussed in a post in the Computational Chemistry Highlights blog, a blog that acts as a journals overlay – and one I participate in as well.)

So, the problem that Grimme and Schreiner3 address is the following: hexaphenylethane 3 is not stable, and 4 is also not stable. The standard argument for their instabilities has been that they are simply too sterically congested about the central C-C bond. However, 5 is stable and its crystal structure has been reported. The central C-C bond length is long: 1.67 Å. But why should 5 exist? It appears to be even more crowded that either 3 or 4. TPSS/TZV(2d,2p) computations on these three compounds indicate that separation into the two radical fragments is very exoergonic. However, when the “D3” dispersion correction is included, 3 and 4 remain unstable relative to their diradical fragments, but 5 is stable by 13.7 kcal mol-1. In fact, when the dispersion correction is left off of the t-butyl groups, 5 becomes unstable. This is a great example of a compound whose stability rests with dispersion attractions.

3: R1 = R2 = H
4: R1 = tBu, R2 = H
5: R1 = H, R2 = tBu


(1) Schreiner, P. R.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A. "Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces," Nature 2011, 477, 308-311, DOI: 10.1038/nature10367

(2) Fokin, A. A.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R. "Stable Alkanes Containing Very Long Carbon–Carbon Bonds," J. Am. Chem. Soc., 2012, 134, 13641-13650, DOI: 10.1021/ja302258q

(3) Grimme, S.; Schreiner, P. R. "Steric Crowding Can tabilize a Labile Molecule: Solving the Hexaphenylethane Riddle," Angew. Chem. Int. Ed., 2011, 50, 12639-12642, DOI: 10.1002/anie.201103615

Grimme &Schreiner Steven Bachrach 25 Sep 2012 4 Comments

Next Page »