Archive for the 'Aromaticity' Category

quintuple helicene fused corannulene

Corannulene 1 is an interesting aromatic compound because it is nonplanar, having a bowl shape. [6]helicene is an interesting aromatic compound because it is nonplanar, having the shape of a helix. Kato, Segawa, Scott and Itami have joined these together to synthesize the interesting quintuple helicene compound 3.1

The optimized structure of 3 is shown in Figure 1. They utilized computations to corroborate two experimental findings. First, the NMR spectra of 3 shows a small number of signals indicating that the bowl inversion should be rapid. The molecule has C5 symmetry due to the bowl shape of the corannulene core. Rapid inversion makes the molecule effectively D5. (The inversion transition state is of D5 symmetry, and would be a nice quiz question for those looking for molecules of unusual point groups.) The B3LYP/6-31G(d) computed bowl inversion barrier is only 1.9 kcal mol-1, significantly less that the bowl inversion barrier of 1: 10.4 kcal mol-1. This reduction is partly due to the shallower bowl depth of 3 (0.572 Å in the x-ray structure, 0.325 Å in the computed structure) than in 1 (0.87 Å).

Figure 1. Optimized structure of 3.

Second, they took the enhanced MMMMM-isomer and heated it to obtain the thermodynamic properties for the inversion to the PPPPP-isomer. (The PPPPP-isomer is shown in the top scheme.) The experimental values are ΔH = 36.8 kcal mol-1, ΔS = 8.7 cal mol-1 K-1, and ΔG = 34.2 kcal mol-1 at 298 K. They computed all of the stereoisomers of 3 along with the transition states connecting them. The largest barrier is found in going from MMMMM3 to MMMMP3 with a computed barrier of 34.5 kcal mol-1, in nice agreement with experiment.


1. Kato, K.; Segawa, Y.; Scott, L. T.; Itami, K., "A Quintuple [6]Helicene with a Corannulene Core as a C5-Symmetric Propeller-Shaped π-System." Angew. Chem. Int. Ed. 2018, 57, 1337-1341, DOI: 10.1002/anie.201711985.


1: InChI=1S/C20H10/c1-2-12-5-6-14-9-10-15-8-7-13-4-3-11(1)16-17(12)19(14)20(15)18(13)16/h1-10H

2: InChI=1S/C26H16/c1-3-7-22-17(5-1)9-11-19-13-15-21-16-14-20-12-10-18-6-2-4-8-23(18)25(20)26(21)24(19)22/h1-16H

3: InChI=1S/C80H40/c1-11-31-51-41(21-1)42-22-2-12-32-52(42)62-61(51)71-63-53-33-13-3-23-43(53)44-24-4-14-34-54(44)64(63)73-67-57-37-17-7-27-47(57)48-28-8-18-38-58(48)68(67)75-70-60-40-20-10-30-50(60)49-29-9-19-39-59(49)69(70)74-66-56-36-16-6-26-46(56)45-25-5-15-35-55(45)65(66)72(62)77-76(71)78(73)80(75)79(74)77/h1-40H

Aromaticity Steven Bachrach 09 Apr 2018 No Comments

Antiaromatic compounds stabilized by benzenoid fusion

Antiaromatic compounds by definition are unstable and so difficult to prepare. One approach to increase their stability is to fuse aromatic ring(s) onto the antiaromatic system. I discuss in this blog post two different scaffolds where this approach has been successful in preparing molecules that express some degree of antiaromaticity. In addition, I mention a technique to aid in evaluating the aromatic/antiaromatic character.

Pentalene 1 is a formal 8-π electron system and would be antiaromatic. To avoid this antiaromatic character, the double bonds are localized. Fusing benzenoid rings to pentalene to give dibenzo[a,e]penatalene 2 has been done, but the central rings avoid antiaromatic character by expressing the Kekule structure shown below.

Yasuda and coworkers report the preparation of mesityl-substituted dibenzo[a,f]penatalene
3.1 Resonance structures of 3¸ shown below, either have only one aromatic ring, or have two aromatic rings along with a trimethylenemethane (TMM) diradical component. Thus, one might expect 3 to express more antiaromatic character than 2.

NICS(1) values, computed at B3LYP/6-31G**, for 2 are -6.23 for the 6-member ring and +5.87 ppm for the 5-member ring, showing reduced aromaticity of the former ring. In sharp contrast, the NICS(1) values for 3 are +7.48 for the 6-member ring and +25.5 ppm for the 5-member ring, indicating substantial antiaromatic character for both rings. The calculated spin density distribution shows largest unpaired density on the expected carbon atoms based on the resonance structures involving the TMM fragment.

Xia and coworkers have prepared substituted analogues of the three structural isomers whereby three naphthylene units are fused together creating two cyclobutadienoid rings.2 These three frameworks are molecules 4-6. The 4-member rings are formally antiaromatic, tempered by the fused aromatic naphthylene groups. The question is then how does the different attachment geometry manifest in aromatic and/or antiaromatic character?

The computations take advantage of the NICS-XY method – well, a variation of this method. I had meant to write a post about the NICS-XY method when Stanger published it,3 but I just never got around to it. The idea is that NICS is evaluated typically at a single point, and just which point to use has been the subject of some discussion. Instead, Stanger proposes the NICS-XY method as a grid of points perpendicular to the plane of the molecule, typically in the plane bisecting the molecule. Trends in the values as one moves across the ring and perpendicular to the ring could assist in identifying aromatic/antiaromatic behavior.

Xia computed the NICSπZZ along a line in the molecular plane bisecting the rings. This is shown in the figure below, which I have reproduced from the article. For example, for 4, which is compound 1 in the Xia paper and the figure below, the NICS values are taken along the line that horizontally bisects the molecule. In ring A, the values are negative, indicative of an aromatic ring. Across ring B, the values are still negative, but not as negative as for ring A, indicating a diminished aromaticity. In ring C, the values are positive, as one would expect for the antiaromatic cyclobutadienoid ring.

Figure taken from J. Am. Chem. Soc. 2017, 139, 15933-15939.

The authors highlight two trends. First, in the linear fusion (see the inset above), the aromatic ring fused to the cyclobutadienoid ring expresses diminished aromaticity. This can be understood in the following way. In naphthalene, the C2-C3 bond is longer than the C1-C2 bond. When the cyclobutadienoid is fused at the C2-C3 bond, it can lengthen even more to weaken the antiaaromaticity of the 4-member ring, and this consequently reduces the aromaticity of the 6-member ring. Fusion of the cyclobutadienoid ring at C1-C2, the shorter bond, causes a higher degree of antiaromaticity in the 4-member ring. The lengthening of this C1-C2 bond to try to reduce the antiromaticity of the 4-member ring leads to greater bond equalization in the 6-member ring, and its consequently greater aromatic character.


1. Konishi, A.; Okada, Y.; Nakano, M.; Sugisaki, K.; Sato, K.; Takui, T.; Yasuda, M., "Synthesis and Characterization of Dibenzo[a,f]pentalene: Harmonization of the Antiaromatic and Singlet Biradical Character." J. Am. Chem. Soc. 2017, 139, 15284-15287, DOI: 10.1021/jacs.7b05709.

2. Jin, Z.; Teo, Y. C.; Teat, S. J.; Xia, Y., "Regioselective Synthesis of [3]Naphthylenes and Tuning of Their Antiaromaticity." J. Am. Chem. Soc. 2017, 139, 15933-15939, DOI: 10.1021/jacs.7b09222.

3. Gershoni-Poranne, R.; Stanger, A., "The NICS-XY-Scan: Identification of Local and Global Ring Currents in Multi-Ring Systems." Chem. Eur. J. 2014, 20, 5673-5688, DOI: 10.1002/chem.201304307.


1: InChI=1S/C8H6/c1-3-7-5-2-6-8(7)4-1/h1-6H

2: InChI=1S/C16H10/c1-3-7-13-11(5-1)9-15-14-8-4-2-6-12(14)10-16(13)15/h1-10H

3: InChI=1S/C16H10/c1-3-7-14-11(5-1)9-13-10-12-6-2-4-8-15(12)16(13)14/h1-10H

4: InChI=1S/C30H16/c1-2-6-18-10-24-23(9-17(18)5-1)27-13-21-15-29-25-11-19-7-3-4-8-20(19)12-26(25)30(29)16-22(21)14-28(24)27/h1-16H

5: InChI=1S/C30H16/c1-3-7-19-15-27-25(13-17(19)5-1)23-11-9-22-21(29(23)27)10-12-24-26-14-18-6-2-4-8-20(18)16-28(26)30(22)24/h1-16H

6: InChI=1S/C30H16/c1-2-7-19-13-26-25(12-18(19)6-1)27-15-21-9-10-22-24-11-17-5-3-4-8-20(17)14-29(24)30(22)23(21)16-28(26)27/h1-16H

Aromaticity Steven Bachrach 08 Jan 2018 No Comments

azatriquinacene, a novel aromatic

The range of aromatic compounds seems limitless. Mascal and co-workers have prepared the azatriquinacene 1 in a remarkably simple fashion.1 The molecule is a zwitterion, with the carbon atoms forming a 9-center, but 10 π-electron ring, and the quaternary nitrogen sitting above it. The carbon ring satisfies Hückel’s rule (4n+2) and so should be aromatic. The capping nitrogen should help to keep the carbon ring fixed in a shallow bowl.

As expected, the molecule in fact turns out to possess an aromatic 10 π-electron ring. The B3LYP/6-311++G(d,p) geometry is shown in Figure 1. There is little bond alternation among the C-C distances: the mean deviation is only 0.015 Å with the largest difference only 0.024 &Aring. The x-ray crystal structure shows the same trends. The NICS(1) value is -12.31 ppm, larger even than that of benzene (-10.22 ppm).

Figure 1. B3LYP/6-311++G(d,p) geometry of 1.


1) Hafezi, N.; Shewa, W. T.; Fettinger, J. C.; Mascal, M., "A Zwitterionic, 10 π Aromatic Hemisphere." Angew. Chem. Int. Ed. 2017, 56, 14141-14144, DOI: 10.1002/anie.201708521.


1: InChI=1S/C10H9N/c1-11-8-2-3-9(11)6-7-10(11)5-4-8/h2-7H,1H3

Aromaticity Steven Bachrach 11 Dec 2017 No Comments

Triplet cyclobutadiene

Cyclobutadiene has long fascinated organic chemists. It is the 4e analogue of the 6e benzene molecule, yet it could hardly be more different. Despite nearly a century of effort, cyclobutadiene analogues were only first prepared in the 1970s, reflecting its strong antiaromatic character.

Per-trimethylsilylcyclobutadiene 1 offers opportunities to probe the properties of the cyclobutadiene ring as the bulky substituents diminish dimerization and polymerization of the reactive π-bonds. Kostenko and coworkers have now reported on the triplet state of 1.1 They observe three EPR signals of 1 at temperatures above 350 K, and these signals increase in area with increasing temperature. This is strong evidence for the existence of triplet 1 in equilibrium with the lower energy singlet. Using the variable temperature EPR spectra, the singlet triplet gap is 13.9 ± 0.8 kcal mol-1.

The structures of singlet and triplet 1 were optimized at B3LYP-D3/6-311+G(d,p) and shown in Figure 1. The singlet is the expected rectangle, with distinctly different C-C distance around the ring. The triplet is a square, with equivalent C-C distances. Since both the singlet and triplet states are likely to have multireference character, the energies of both states were obtained at RI-MRDDCI2-CASSCF(4,4)/def2-SVP//B3LYPD3/6-311+G(d,p) and give a singlet-triplet gap of 11.8 kcal mol-1, in quite reasonable agreement with experiment.



Figure 1. Optimized geometries of singlet and triplet 1.


1. Kostenko, A.; Tumanskii, B.; Kobayashi, Y.; Nakamoto, M.; Sekiguchi, A.; Apeloig, Y., "Spectroscopic Observation of the Triplet Diradical State of a Cyclobutadiene." Angew. Chem. Int. Ed. 2017, 56, 10183-10187, DOI: 10.1002/anie.201705228.


1: InChI=1S/C16H36Si4/c1-17(2,3)13-14(18(4,5)6)16(20(10,11)12)15(13)19(7,8)9/h1-12H3

Aromaticity &cyclobutadiene Steven Bachrach 11 Sep 2017 1 Comment


The synthesis of components of nanostructures (like fullerenes and nanotubes) has dramatically matured over the past few years. I have blogged about nanohoops before, and this post presents the recent work of the Itami group in preparing the nanobelt 1.1


The synthesis is accomplished through a series of Wittig reactions with an aryl-aryl coupling to stitch together the final rings. The molecule is characterized by NMR and x-ray crystallography. The authors have also computed the structure of 1 at B3LYP/6-31G(d), shown in Figure 1. The computed C-C distances match up very well with the experimental distances. The strain energy of 1, presumably estimated by Reaction 1,2 is computed to be about 119 kcal mol-1.


Figure 1. B3LYP/6-31G(d) optimized structure of 1.

Rxn 1

NICS(0) values were obtained at B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d); the rings along the middle of the belt have values of -7.44ppm and are indicative of normal aromatic 6-member rings, while the other rings have values of -2.00ppm. This suggests the dominant resonance structure shown below:


1) Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K., "Synthesis of a carbon nanobelt." Science 2017, 356, 172-175, DOI: 10.1126/science.aam8158.

2) Segawa, Y.; Yagi, A.; Ito, H.; Itami, K., "A Theoretical Study on the Strain Energy of Carbon Nanobelts." Org. Letters 2016, 18, 1430-1433, DOI: 10.1021/acs.orglett.6b00365.


1: InChI=1S/C48H24/c1-2-26-14-40-28-5-6-31-20-44-32(19-42(31)40)9-10-34-24-48-36(23-46(34)44)12-11-35-21-45-33(22-47(35)48)8-7-30-17-41-29(18-43(30)45)4-3-27-15-37(39(26)16-28)25(1)13-38(27)41/h1-24H

Aromaticity &nanohoops Steven Bachrach 22 May 2017 No Comments


I have discussed the circulenes in a few previous posts. Depending on their size, they can be bowls, flat disks, or saddles. A computational study of [7]circulene noted that C2 structure is slightly higher in energy than the Cs form,1 though the C2 form is found in the x-ray structure.2

Now, Miao and co-workers have synthesized the tetrabenzo[7]circulene 1 and also examined its structure using DFT.3

As with the parent compound, a C2 and Cs form were located at B3LYP/6-31G(d,p), and are shown in Figure 1. The C2 form is 7.6 kcal mol-1 lower in energy than the Cs structure, and the two are separated by a transition state (also shown in Figure 1) with a barrier of 12.2 kcal mol-1. The interconversion of these conformations takes place without going through a planar form. The x-ray structure contains only the C2 structure. It should be noted that the C2 structure is chiral, and racemization would take place by the path: 1-Cs1-Cs1-C2*, where 1-C2* is the enantiomer of 1-C2.




Figure 1. B3LYP/6-31G(d,p) optimized structures of 1.


1) Hatanaka, M., "Puckering Energetics and Optical Activities of [7]Circulene Conformers." J. Phys. Chem. A 2016, 120 (7), 1074-1083, DOI: 10.1021/acs.jpca.5b10543.

2) Yamamoto, K.; Harada, T.; Okamoto, Y.; Chikamatsu, H.; Nakazaki, M.; Kai, Y.; Nakao, T.; Tanaka, M.; Harada, S.; Kasai, N., "Synthesis and molecular structure of [7]circulene." J. Am. Chem. Soc. 1988, 110 (11), 3578-3584, DOI: 10.1021/ja00219a036.

3) Gu, X.; Li, H.; Shan, B.; Liu, Z.; Miao, Q., "Synthesis, Structure, and Properties of Tetrabenzo[7]circulene." Org. Letters 2017, DOI: 10.1021/acs.orglett.7b00714.


1: InChI=1S/C44H22/c1-5-13-28-24(9-1)32-19-17-23-18-20-33-25-10-2-6-14-29(25)38-31-16-8-4-12-27(31)35-22-21-34-26-11-3-7-15-30(26)37(28)43-39(32)36(23)40(33)44(38)42(35)41(34)43/h1-22H

Aromaticity Steven Bachrach 01 May 2017 No Comments

A six-coordinate carbon atom

Hypercoordinated carbon has fascinated chemists since the development of the concept of the tetravalent carbon. The advent of superacids has opened up the world of hypercoordinated species and now a crystal structure of a hexacoordinated carbon has been reported for the C6(CH3)62+ species 1.1

The molecule is prepared by first epoxidation of hexamethyl Dewar benzene, followed by reaction with Magic acid, and crystallized by the addition of HF. The crystal structure shows a pentamethylcyclopentadienyl base capped by a carbon with a methyl group. The x-ray structure is well reproduced by the B3LYP/def2-TZVP structure shown in Figure 1. (While this DFT method predicts a six-member isomer to be slightly lower in energy, MP2 does predict the cage as the lowest energy isomer.)


Figure 1. B3LYP/def2-TZVP optimized geometry of 1.

The Wiberg bond order for the bond between the capping carbon and each carbon of the five-member base is about 0.54, so the sum of the bond orders to the apical carbon is less than 4. The carbon is therefore not hypervalent, but it appears to truly be hypercoordinate. (A topological electron density analysis (AIM) study would have been interesting here.) NICS analysis indicates the cage formed by the apical carbon and the five-member ring expresses 3-D aromaticity. This can be thought of as coming from the C5(CH3)5+ fragment with its 4 electrons and the CCH3+ fragment with two electrons, providing 4n + 2 = 6 electrons for the aromatic cage.


1) Malischewski, M.; Seppelt, K., "Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethylbenzene Dication C6(CH3)62+" Angew. Chem. Int. Ed. 2017, 56, 368-370, DOI: 10.1002/anie.201608795.

Aromaticity Steven Bachrach 17 Jan 2017 2 Comments

A Twisted Aromatic Makes for an Accessible Triplet State

Wentrup and co-workers examined the strained, non-planar aromatic 1.1

The UKS-BP86-D3BJ/def2-TZVP optimized geometry of the singlet 1 is shown in Figure 1. The molecule is decidedly twisted, with an angle of about 52°. This large twist, weakening the π-bond between the two aromatic fragments, suggests that the triplet state of 1 might be easily accessible. The geometry of 31 is also shown in Figure 1, and the two aromatic portions are orthogonal.



Figure 1. UKS-BP86-D3BJ/def2-TZVP optimized geometries of 11 and 31.

The proton and 13C NMR studies of 1 show increasing paramagnetism, observed as line broadening, with increasing temperature. Confirming this is ESR which shows increasing signal with increasing temperature. The triplet state is clearly present. The experimental ΔEST=9.6 kcal mol-1 and the computed singlet-triplet gap is 9.3 kcal mol-1. This is in excellent agreement, and much better than previous computations which predict a gap of 3.4 kcal mol-1, but omitted the D3 correction. This dispersion correction stabilizes the singlet state over the triplet state, as might be expected. (The triplet has the two aromatic components orthogonal and so they have minimal dispersion interactions, while the aromatic planes are much closer in the singlet state.)

For comparison, the computed ΔEST of isomer 2 is much larger: 17.9 kcal mol-1. The energies of the triplet states of 1 and 2 are nearly identical. Both of these structures have orthogonal, non-interacting aromatic moieties. However, the energy of 12 with the twist angles of 11 is 8.2 kcal mol-1 lower than that of 11. This the twisting causes a significant strain to the singlet state, but not to the triplet, and that gives rise to its small singlet-triplet gap.


1) Wentrup, C.; Regimbald-Krnel, M. J.; Müller, D.; Comba, P., "A Thermally Populated, Perpendicularly Twisted Alkene Triplet Diradical." Angew. Chem. Int. Ed. 2016, 55, 14600-14605, DOI: 10.1002/anie.201607415.


1: InChI=1S/C42H24/c1-5-13-29-25(9-1)17-21-33-34-22-18-26-10-2-6-14-30(26)38(34)41(37(29)33)42-39-31-15-7-3-11-27(31)19-23-35(39)36-24-20-28-12-4-8-16-32(28)40(36)42/h1-24H

2: InChI=1S/C42H24/c1-5-13-29-21-37-33(17-25(29)9-1)34-18-26-10-2-6-14-30(26)22-38(34)41(37)42-39-23-31-15-7-3-11-27(31)19-35(39)36-20-28-12-4-8-16-32(28)24-40(36)42/h1-24H

Aromaticity Steven Bachrach 03 Jan 2017 No Comments

Redox switching

In searching for a redox switch, Matsuda, Ishikawa and co-workers1 landed on 13,14-picenedione 1, which could, at least in principle, be reduced by reacting with H2 to form the diol 2. The back reaction could then occur via the reaction with oxygen gas.

They first optimized the geometries of both compounds at B3PW91/6-311+G(2d), and these geometries are shown in Figure 1. TD-DFT computations then predicted that 1 would be yellow (maximum absorption at 412nm) and 2 would be colorless (maximum absorption at 378nm). Furthermore, 1 should have no fluorescence while 2 should fluoresce at 464nm and be blue.



Figure 1. B3PW91/6-311+G(2d) optimized geometries of 1 and 2.

Of particular note is that the geometry of 1 is twisted, with the O-C-C-O dihedral angle being 34.9°, while there is essentially no such twisting in 2 (its O-C-C-O dihedral angle is 0.7°). The twisting in 1 manifests in antiaromatic character of the central ring, with NICS(0)=+13.2ppm, while the central ring of 2 is aromatic, with NICS(0)=-10.0. The redox properties therefore reflect the change in the aromatic character.

They next synthesized 2 and reduced it with hydrogen gas to 1. The x-ray crystal structure of 1 shows a twisted structure (O-C-C-O dihedral of 28.87°). As predicted, 1 is yellow and 2 is colorless, and 1 has no fluorescence while 2 fluoresces blue.


(1) Urakawa, K.; Sumimoto, M.; Arisawa, M.; Matsuda, M.; Ishikawa, H. "Redox Switching of Orthoquinone-Containing Aromatic Compounds with Hydrogen and Oxygen Gas," Angew. Chem. Int. Ed. 2016, 55, 7432-7436, DOI: 10.1002/anie.201601906.


1: InChI=1S/C22H12O2/c23-21-19-15-7-3-1-5-13(15)9-11-17(19)18-12-10-14-6-2-4-8-16(14)20(18)22(21)24/h1-12H

2: InChI=InChI=1S/C22H14O2/c23-21-19-15-7-3-1-5-13(15)9-11-17(19)18-12-10-14-6-2-4-8-16(14)20(18)22(21)24/h1-12,23-24H

Aromaticity Steven Bachrach 06 Jul 2016 No Comments

Diels-Alder reactions of some arenes

Houk has examined the Diels-Alder reaction involving ethene with benzene 1 and all of its aza-substituted isomers having four or fewer nitrogen atoms 2-11.1 The reactions were computed at M06-2X/6-311+G(d,p).

All of the possible Diels-Alder reactions were examined, and they can be classified in terms of whether two new C-C bonds are formed, one new C-C and one new C-N bond are formed, or two new C-N bonds are formed. Representative transition states of these three reaction types are shown in Figure 1, using the reaction of 7 with ethene.

Figure 1. M06-2X/6-311+G(d,p) optimized transition states for the Diels-Alders reactions of 7 with ethene.

A number of interesting trends are revealed. For a given type of reaction (as defined above), as more nitrogens are introduced into the ring, the activation energy decreases. Forming two C-C bonds has a lower barrier than forming a C-C and a C-N, which has a lower barrier than forming two C-N bonds. The activation barriers are linearly related to the aromaticity of the ring defined by either NICS(0) or aromatic stabilization energy, with the barrier decreasing with decreasing aromaticity. The barrier is also linearly related to the exothermicity of the reaction.

The activation barrier is also linearly related to the distortion energy. With increasing nitrogen substitution, the ring becomes less aromatic, and therefore more readily distorted from planarity to adopt the transition state structure.


(1) Yang, Y.-F.; Liang, Y.; Liu, F.; Houk, K. N. "Diels–Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions," J. Am. Chem. Soc. 2016, 138, 1660-1667, DOI: 10.1021/jacs.5b12054.

Aromaticity &Diels-Alder &Houk Steven Bachrach 26 Apr 2016 No Comments

Next Page »