SpnF revisited

Uncategorized Steven Bachrach 11 Apr 2017 1 Comment

Medvedev, et al. have examined the cyclization step in the formation of Spinosyn A, which is catalyzed by the putative Diels-Alderase enzyme SpnF.1 This work follows on the computational study done by Houk, Singleton and co-workers,2 which I have discussed in this post (Dynamics in a reaction where a [6+4] and [4+2] cycloadditons compete). In fact, I recommend that you read the previous post before continuing on with this one. In summary, Houk, et al. found that a single transition state connects reactant 1 to both 2 and 3. The experimental product with the enzyme SpnF is 3. In the absence of enzyme, Houk, et al. suggest that reactions will cross the bispericyclic transition state TS-BPC (TS1 in the previous post) leading primarily to 2, which then undergoes a Cope rearrangement to get to product 3. Some molecules will follow pathways that go directly to 3.

The PCM(water)/M06-2x/6-31+G(d) study by Medvedev, et al. first identifies 560 conformations of 3. Next, they identified 384 TSs lying within 30 kcal mol-1 from the lowest TS. These can be classified as either TS-DA (leading directly to 3) or TS-BPC (which may lead to 2 by steepest descent, but can bifurcate towards 3). They opt to utilize the Atoms-in-Molecules theory to identify bond critical points to categorize these TS, and find that 144 are TS-BPC and 240 are TS-DA. (The transition state found by Houk, et al. is the second lowest energy TS found in this study, 0.29 kcal mol-1 higher in energy that the lowest TS and also of TS-BPC type.)

They also examined two alternative routes. First, they propose a path that first takes 1 to 4 via an alternative Diels-Alder reaction, and a second Cope rearrangement (TS-Cope2) takes this to 2, which can then convert to 3 via TS-Cope1. The other route involves a biradical pathway to either A or B. These alternatives prove to be non-competitive, with transition state energies significantly higher than either TS-DA or TS-BPC.

Returning to the set of TS-DA and TS-BPC transition states, while the former are more numerous, the latter are lower in energy. In summary, this study further complicates the complex situation presented by Houk, et. al. In the absence of catalyst, 1 can undergo either a Diels-Alder reaction to 3, or pass through a bispericyclic transition state that can lead to 3, but principally to 2 and then undergo a Cope rearrangement to get to 3. The question that ends my previous post on this subject — “ just what role does the enzyme SpnF play?” — remains to be answered.


1) Medvedev, M. G.; Zeifman, A. A.; Novikov, F. N.; Bushmarinov, I. S.; Stroganov, O. V.; Titov, I. Y.; Chilov, G. G.; Svitanko, I. V., "Quantifying Possible Routes for SpnF-Catalyzed Formal Diels–Alder Cycloaddition." J. Am. Chem. Soc. 2017, 139, 3942-3945, DOI: 10.1021/jacs.6b13243.

2) Patel, A.; Chen, Z.; Yang, Z.; Gutiérrez, O.; Liu, H.-w.; Houk, K. N.; Singleton, D. A., "Dynamically Complex [6+4] and [4+2] Cycloadditions in the Biosynthesis of Spinosyn A." J. Am. Chem. Soc. 2016, 138, 3631-3634, DOI: 10.1021/jacs.6b00017.


1: InChI=1S/C24H34O5/c1-3-21-15-12-17-23(27)19(2)22(26)16-10-7-9-14-20(25)13-8-5-4-6-11-18-24(28)29-21/h4-11,16,18-21,23,25,27H,3,12-15,17H2,1-2H3/b6-4+,8-5+,9-7+,16-10+,18-11+/t19-,20+,21-,23-/m0/s1

2: InChI=1S/C24H34O5/c1-3-19-8-6-10-22(26)15(2)23(27)20-12-11-17-14-18(25)13-16(17)7-4-5-9-21(20)24(28)29-19/h4-5,7,9,11-12,15-22,25-26H,3,6,8,10,13-14H2,1-2H3/b7-4-,9-5+,12-11+/t15-,16-,17-,18-,19+,20+,21-,22+/m1/s1

3: InChI=1S/C24H34O5/c1-3-19-5-4-6-22(26)15(2)23(27)11-10-20-16(9-12-24(28)29-19)7-8-17-13-18(25)14-21(17)20/h7-12,15-22,25-26H,3-6,13-14H2,1-2H3/b11-10+,12-9+/t15-,16+,17-,18-,19+,20-,21-,22+/m1/s1

Automated chemical drawings

Uncategorized Steven Bachrach 21 Mar 2017 5 Comments

Making a good drawing of a chemical structure can be a difficult task. One wants to prepare a drawing that provides a variety of different information in a clean and clear way. We tend to want equal bond lengths, angles that are representative of the atom’s hybridization, symmetrical rings, avoided bond crossings, and the absence of overlapping groups. These ideals may be difficult to manage. Sometimes we might also want to represent something about the actual 3-dimensional shape. So for example, the drawing on the left of Figure 1 properly represents the atom connectivity with no bond crossing, but the figure on the right is probably the image all organic chemists would want to see for cubane.

Figure 1. Two drawing of cubane

For another example, the drawing on the left of Figure 2 nicely captures the relative stereo relationships within D-glucose, but the drawing on the right adds in the fact that the cyclohexyl ring is in a chair conformation. Which drawing is better? Well, it likely is in the eye of the beholder, and the context of the chemistry at hand.

Figure 2. Two drawings of D-glucose.

Frączek has reported on an automated procedure for creating aesthetically pleasing 2-D drawings of chemical structures.1 The method involves optimizing distances between atoms projected onto a 2-D plane, along with rules to try to keep atom lengths and angles similar, and symmetrical rings, and minimize overlapping bonds. He shows a number of nice examples, especially of natural products, where his automated procedure PSM (physical simulation method) provides some very nice drawings, often noticeably superior to those generated by previously proposed schemes for preparing drawings.

Using the web site he has developed (http://omnidepict.p.lodz.pl/), I recreated the structures of some of the molecules I have discussed in this blog. In Figure 3, these are shown side-by-side to my drawings. My drawings were generally done with MDL/Isis/Accelrys/Biovia Draw (available for free for academic users) with an eye towards representing what I think is a suitable view of the molecule based on what I am discussing in the blog post. For many molecules, PSM does a very nice job, sometimes better than what I have drawn, but in some cases PSM produces an inferior drawing. Nonetheless, creating nice chemical drawings can be tedious and PSM offers a rapid option, worthy of at least trying out. Ultimately, what we decide to draw and publish is often an aesthetic choice and each individual must decide on one’s own how best to present one’s work.

My Drawing


Figure 3. Comparison of my drawings vs. drawing made by PSM.


1) Frączek, T., "Simulation-Based Algorithm for Two-Dimensional Chemical Structure Diagram Generation of Complex Molecules and Ligand–Protein Interactions." J. Chem. Inform. Model. 2016, 56, 2320-2335, DOI: 10.1021/acs.jcim.6b00391.

The strongest base?

Acidity Steven Bachrach 21 Feb 2017 1 Comment

The new benchmark has been set for superbases. The previous record holder was LiO, with a computed proton affinity of 424.9 kcal mol-1. A new study by Poad, et al., examines the dianions of the three isomeric phenyldiacetylides: 1o, 1m, and 1p.1 Their computed proton affinities (G4(MP2)-6X) are 440.6, 427.0, and 425.6 kcal mol-1, respectively. The optimized geometries of these dianions are shown in Figure 1.




Figure 1. Optimized geometries of 1o, 1m, and 1p.

The authors also prepared these bases inside a mass spectrometer. All three deprotonate water, but do not deprotonate methane, though that might be a kinetic issue.

The authors speculate that 1o will be hard to beat as a base since loss of an electron is always a concern with small dianions.


1) Poad, B. L. J.; Reed, N. D.; Hansen, C. S.; Trevitt, A. J.; Blanksby, S. J.; Mackay, E. G.; Sherburn, M. S.; Chan, B.; Radom, L., "Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion." Chem. Sci. 2016, 7, 6245-6250, DOI: 10.1039/C6SC01726F.


1o: InChI=1S/C10H4/c1-3-9-7-5-6-8-10(9)4-2/h5-8H/q-2

1m: InChI=1S/C10H4/c1-3-9-6-5-7-10(4-2)8-9/h5-8H/q-2

1p: InChI=1S/C10H4/c1-3-9-5-7-10(4-2)8-6-9/h5-8H/q-2

Conformationally selective tunneling

carbenes &Schreiner &Tunneling Steven Bachrach 07 Feb 2017 2 Comments

The Schreiner group has again reported an amazing experimental and computational study demonstrating a fascinating quantum mechanical tunneling effect, this time for the trifluoromethylhydroxycarbene (CF3COH) 2.1 (I have made on a number of posts discussing a series of important studies in this field by Schreiner.) Carbene 2 is formed, in analogy to many other hydroxycarbenes, by flash vapor pyrolysis of the appropriate oxoacid 1 and capturing the products on a noble gas matrix.

Carbene 2t is observed by IR spectroscopy, and its structure is identified by comparison with the computed CCSD(T)/cc-pVTZ frequencies. When 2t is subjected to 465 nm light, the signals for 2t disappear within 30s, and two new species are observed. The first species is the cis conformer 2c, confirmed by comparison with its computed CCSD(T)/cc-pVTZ frequencies. This cis conformer remains even with continued photolysis. The other product is determined to be trifluoroacetaldehyde 3. Perhaps most interesting is that 2t will convert to 3 in the absence of light at temperatures between 3 and 30 K, with a half-life of about 144 h. There is little rate difference at these temperatures. These results are quite indicative of quantum mechanical tunneling.

To aid in confirming tunneling, they computed the potential energy surface at CCSD(T)/cc-pVTZ. The trans isomer is 0.8 kcal mol-1 lower in energy that the cis isomer, and this is much smaller than for other hydroxycarbenes they have examined. The rotational barrier TS1 between the two isomer is quite large, 26.4 kcal mol-1, precluding their interchange by classical means at matrix temperatures. The barrier for conversion of 2t to 3 (TS2) is also quite large, 30.7 kcal mol-1, and insurmountable at 10K by classical means. No transition state connecting 2c to 3 could be located. These geometries and energies are shown in Figure 1.






Figure 1. Optimized geometries at CCSD(T)/cc-pVTZ. Relative energies (kcal mol-1) of each species are listed as well.

WKB computations at M06-2X/6-311++G(d,p) predict a half-life of 172 h, in nice agreement with experiment. The computed half-life for deuterated 2t is 106 years, and the experiment on the deuterated analogue revealed no formation of deuterated 3.

The novel component of this study is that tunneling is conformationally selective. The CF3 group stabilizes the cis form probably through some weak HF interaction, so that the cis isomer can be observed, but no tunneling is observed from this isomer. Only the trans isomer has the migrating hydrogen atom properly arranged for a short hop over to the carbon, allowing the tunneling process to take place.


1) Mardyukov, A.; Quanz, H.; Schreiner, P. R., "Conformer-specific hydrogen atom tunnelling in trifluoromethylhydroxycarbene." Nat. Chem. 2017, 9, 71–76, DOI: 10.1038/nchem.2609.


1: =1S/C3HF3O3/c4-3(5,6)1(7)2(8)9/h(H,8,9)

2: InChI=1S/C2HF3O/c3-2(4,5)1-6/h6H

3: InChI=1S/C2HF3O/c3-2(4,5)1-6/h1H

A six-coordinate carbon atom

Aromaticity Steven Bachrach 17 Jan 2017 2 Comments

Hypercoordinated carbon has fascinated chemists since the development of the concept of the tetravalent carbon. The advent of superacids has opened up the world of hypercoordinated species and now a crystal structure of a hexacoordinated carbon has been reported for the C6(CH3)62+ species 1.1

The molecule is prepared by first epoxidation of hexamethyl Dewar benzene, followed by reaction with Magic acid, and crystallized by the addition of HF. The crystal structure shows a pentamethylcyclopentadienyl base capped by a carbon with a methyl group. The x-ray structure is well reproduced by the B3LYP/def2-TZVP structure shown in Figure 1. (While this DFT method predicts a six-member isomer to be slightly lower in energy, MP2 does predict the cage as the lowest energy isomer.)


Figure 1. B3LYP/def2-TZVP optimized geometry of 1.

The Wiberg bond order for the bond between the capping carbon and each carbon of the five-member base is about 0.54, so the sum of the bond orders to the apical carbon is less than 4. The carbon is therefore not hypervalent, but it appears to truly be hypercoordinate. (A topological electron density analysis (AIM) study would have been interesting here.) NICS analysis indicates the cage formed by the apical carbon and the five-member ring expresses 3-D aromaticity. This can be thought of as coming from the C5(CH3)5+ fragment with its 4 electrons and the CCH3+ fragment with two electrons, providing 4n + 2 = 6 electrons for the aromatic cage.


1) Malischewski, M.; Seppelt, K., "Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethylbenzene Dication C6(CH3)62+" Angew. Chem. Int. Ed. 2017, 56, 368-370, DOI: 10.1002/anie.201608795.

A Twisted Aromatic Makes for an Accessible Triplet State

Aromaticity Steven Bachrach 03 Jan 2017 No Comments

Wentrup and co-workers examined the strained, non-planar aromatic 1.1

The UKS-BP86-D3BJ/def2-TZVP optimized geometry of the singlet 1 is shown in Figure 1. The molecule is decidedly twisted, with an angle of about 52°. This large twist, weakening the π-bond between the two aromatic fragments, suggests that the triplet state of 1 might be easily accessible. The geometry of 31 is also shown in Figure 1, and the two aromatic portions are orthogonal.



Figure 1. UKS-BP86-D3BJ/def2-TZVP optimized geometries of 11 and 31.

The proton and 13C NMR studies of 1 show increasing paramagnetism, observed as line broadening, with increasing temperature. Confirming this is ESR which shows increasing signal with increasing temperature. The triplet state is clearly present. The experimental ΔEST=9.6 kcal mol-1 and the computed singlet-triplet gap is 9.3 kcal mol-1. This is in excellent agreement, and much better than previous computations which predict a gap of 3.4 kcal mol-1, but omitted the D3 correction. This dispersion correction stabilizes the singlet state over the triplet state, as might be expected. (The triplet has the two aromatic components orthogonal and so they have minimal dispersion interactions, while the aromatic planes are much closer in the singlet state.)

For comparison, the computed ΔEST of isomer 2 is much larger: 17.9 kcal mol-1. The energies of the triplet states of 1 and 2 are nearly identical. Both of these structures have orthogonal, non-interacting aromatic moieties. However, the energy of 12 with the twist angles of 11 is 8.2 kcal mol-1 lower than that of 11. This the twisting causes a significant strain to the singlet state, but not to the triplet, and that gives rise to its small singlet-triplet gap.


1) Wentrup, C.; Regimbald-Krnel, M. J.; Müller, D.; Comba, P., "A Thermally Populated, Perpendicularly Twisted Alkene Triplet Diradical." Angew. Chem. Int. Ed. 2016, 55, 14600-14605, DOI: 10.1002/anie.201607415.


1: InChI=1S/C42H24/c1-5-13-29-25(9-1)17-21-33-34-22-18-26-10-2-6-14-30(26)38(34)41(37(29)33)42-39-31-15-7-3-11-27(31)19-23-35(39)36-24-20-28-12-4-8-16-32(28)40(36)42/h1-24H

2: InChI=1S/C42H24/c1-5-13-29-21-37-33(17-25(29)9-1)34-18-26-10-2-6-14-30(26)22-38(34)41(37)42-39-23-31-15-7-3-11-27(31)19-35(39)36-20-28-12-4-8-16-32(28)24-40(36)42/h1-24H

Tunneling within a phenylnitrene

Tunneling Steven Bachrach 15 Dec 2016 No Comments

Reva and McMahon report a very nice experimental and computational study implicating hydrogen atom tunneling in the rearrangement of the nitrene 1 into the ketene 2.1 The reaction is carried out by placing azide 3 in an argon matrix and photolyzing it. The IR shows that at first a new compound A is formed and that over time the absorptions of A erode and those of a second compound B grow in. This occurs whether the photolysis continues or not over time.

IR spectra were computed at B3LYP/6-311++G(d,p) for compounds 31 and 2 and they match up very well with the recorded spectra of A and B, respectively. The triplet state of nitrenes are typically about 20 kcal mol-1 lower in energy than the singlet states. The EPR spectrum confirms that 1 is a triplet.

So how does the conversion of 31 into 2 take place, especially at 10 K? The rate constant for this conversion at 10 K is estimated as 1 x 10-5 s-1, which implies a barrier from classical transition state theory of only 0.2 kcal mol-1. That low a barrier seems preposterous, and suggests that the reaction may proceed via tunneling. This notion is supported by the experiment on the deuterated analogue, which shows no conversion of 1D into 2D.

The authors propose that 31 undergoes a hydrogen migration on the triplet surface through transition state 34 to give 32, which then undergoes intersystem crossing to give singlet 2. The structures of these critical points calculated at B3LYP/6-311++G(d,p) are shown in Figure 1. The computed activation barrier is 20.7 kcal mol-1. (The barrier height ranges from 16.7 to 23.0 with a variety of different computational methods.) This large barrier precludes a classical over-the-top reaction and points towards tunneling. The barrier width is estimated at about 2.1 Å. WKB computations estimate the tunneling half time of about 21 min, somewhat smaller than in the experiments, and the estimate for the deuterated species is 150,000 years.




Figure 1. B3LYP/6-311++G(d,p) optimized structures of 31, 32, and the TS 34.


1) Nunes, C. M.; Knezz, S. N.; Reva, I.; Fausto, R.; McMahon, R. J., "Evidence of a Nitrene Tunneling Reaction: Spontaneous Rearrangement of 2-Formyl Phenylnitrene to an Imino Ketene in Low-Temperature Matrixes." J. Am. Chem. Soc. 2016, 138, 15287-15290, DOI: 10.1021/jacs.6b07368.


1: InChI=1S/C7H5NO/c8-7-4-2-1-3-6(7)5-9/h1-5H

2: InChI=1S/C7H5NO/c8-7-4-2-1-3-6(7)5-9/h1-4,8H

NMR coupling constants of strychnine

NMR Steven Bachrach 15 Nov 2016 No Comments

Helgaker, Jaszunski, and Swider1 have examined the use of B3LYP with four different basis sets to compute the spin-spin coupling constants in strychnine 1.


They used previously optimized coordinates of the two major conformations of strychnine, shown in Figure 1.

Conformer A

Conformer B

Figure 1. Confrmations of strychnine 1.

They tested four basis sets designed for NMR computations: pcJ-0,2 pcJ-1,2 6-31G-J,3 and 6-311G-J.3 pCJ-0 and 6-31G-J are relatively small basis sets, while the other two are considerably larger.

All four basis sets provide values of the 122 J(C-H) with a root mean square deviation of less than 0.6 Hz. J(HH) and J(CC) coupling constants are also well predicted, especially with the larger pcJ-1 basis set. They also examined the four Ramsey terms in the coupling model. The Fermi contact term dominates, and if the large pcJ-1 basis set is used to calculate it, and the smaller pcJ-0 basis set is used for the other three terms, the RMS error only increases from 0.18 to 0.20 Hz. Taking this to the extreme, they omitted calculating any of the non-Fermi contact terms, with again only small increases in the RMS – even with the small pcJ-0 basis set. Considering the computational costs, one should seriously consider whether the non-Fermi contact terms and a small basis set might be satisfactory for your own problem(s) at hand.


1) Helgaker, T.; Jaszuński, M.; Świder, P., "Calculation of NMR Spin–Spin Coupling Constants in Strychnine." J. Org. Chem. 2016, ASAP, DOI: 10.1021/acs.joc.6b02157.

2) Jensen, F., "The Basis Set Convergence of Spin−Spin Coupling Constants Calculated by Density Functional Methods." J. Chem. Theor. Comput. 2006, 2, 1360-1369, DOI: 10.1021/ct600166u.

3) Kjær, H.; Sauer, S. P. A., "Pople Style Basis Sets for the Calculation of NMR Spin–Spin Coupling Constants: the 6-31G-J and 6-311G-J Basis Sets." J. Chem. Theor. Comput. 2011, 7, 4070-4076, DOI: 10.1021/ct200546q.


Strychnine 1: InChI=1S/C21H22N2O2/c24-18-10-16-19-13-9-17-21(6-7-22(17)11-12(13)5-8-25-16)14-3-1-2-4-15(14)23(18)20(19)21/h1-5,13,16-17,19-20H,6-11H2/t13-,16-,17-,19-,20-,21+/m0/s1

More examples of structure determination with computed NMR chemical shifts

NMR &terpenes Steven Bachrach 25 Oct 2016 No Comments

Use of computed NMR chemical shifts in structure determination is really growing fast. Presented here are a couple of recent examples.

Nguyen and Tantillo used computed chemical shifts with the DP4 analysis to identify the structure of three terpenes 1-3.1 They optimized the geometries of all of the diastereomers of each compound, along with multiple conformations of each diastereomer, at B3LYP/6-31+G(d,p) and then computed the chemical shifts at SMD(CHCl3)–mPW1PW91/6-311+G(2d,p). The chemical shifts were Boltzmann weighted including all conformations within 3 kcal mol-1 of the lowest energy structure.

For 1, the DP4 analysis using just the proton shifts predicted a different isomer than using the carbon shifts, but when combined, DP4 predicted the structure, with 98.8% confidence, shown in the scheme above, and in Figure 1. For 2, the combined proton and carbon shift analysis with DP4 indicated a 100% confidence of the structure shown in the scheme and Figure 1. Lastly, for 3, which is more complicated due to the conformations of the 9-member ring, DP4 predicts with 100% confidence the structure shown in the scheme and Figure 1.




Figure 1. Optimized geometries of 1-3.

Feng, Davis and coworkers have examined a series of anthroquionones from Australian marine sponges.2 The structure of one compound was a choice of two options: 4 or 5. Initial geometries were obtain by molecular mechanics and the low energy isomers were then reoptimized at B3LYP/6-31+G(d,p). The chemical shifts were computed using PCM/MPW1PW91/6-311+G(2d,p). Application of the DP4 method indicate the structure to be 4 with a 100% confidence level. The lowest energy conformer of 4 is shown in Figure 2.

Figure 2. Optimized geometry of 4.


1) Nguyen, Q. N. N.; Tantillo, D. J. “Using quantum chemical computations of NMR chemical shifts to assign relative configurations of terpenes from an engineered Streptomyces host,” J. Antibiotics 2016, 69, 534–540, DOI: 10.1038/ja.2016.51.

2) Khokhar, S.; Pierens, G. K.; Hooper, J. N. A.; Ekins, M. G.; Feng, Y.; Rohan A. Davis, R. A. “Rhodocomatulin-Type Anthraquinones from the Australian Marine Invertebrates Clathria hirsuta and Comatula rotalaria,” J. Nat. Prod., 2016, 79, 946–953, DOI: 10.1021/acs.jnatprod.5b01029.


1: InChI=1S/C15H24/c1-10-5-6-15(4)8-11-7-14(2,3)9-12(11)13(10)15/h9-11,13H,5-8H2,1-4H3/t10-,11+,13-,15+/m1/s1

2: InChI=1S/C15H24/c1-10-5-6-15(4)8-11-7-14(2,3)9-12(11)13(10)15/h5,11-13H,6-9H2,1-4H3/t11-,12-,13+,15-/m0/s1

3: InChI=1S/C20H32/c1-14-6-9-18-19(3,4)10-11-20(18,5)13-17-15(2)7-8-16(17)12-14/h6,13,15-16,18H,7-12H2,1-5H3/b14-6-,17-13-/t15-,16-,18-,20+/m0/s1

4: InChI=1S/C18H14O7/c1-7(19)13-10(20)6-11(21)15-16(13)17(22)9-4-8(24-2)5-12(25-3)14(9)18(15)23/h4-6,20-21H,1-3H3

5: InChI=1S/C18H14O7/c1-7(19)13-10(20)6-11(21)15-16(13)14-9(17(22)18(15)23)4-8(24-2)5-12(14)25-3/h4-6,20-21H,1-3H3

Further development of DP4 for NMR structure determination

NMR Steven Bachrach 11 Oct 2016 No Comments

Computational chemistry has had a remarkable impact on the field of structure determination by NMR spectroscopy. The ability to efficiently compute 13C and 1H chemical shifts allows for comparison of the computed chemical shifts of potential structures against the experimental values, a tremendous aid in structure determination (see some examples in previous posts). Goodman and Smith developed the DP4 method1 (see this post) to assist in identifying proper structures by means of statistical distribution of errors and Bayes Theorem.

The Goodman group now reports on workflow solutions to structure prediction using DP4.2 They explore the use of open source computational tools both for predicting conformations and for computing the chemical shifts. They use a set of 10 drugs to test the performance. In general, the original DP4 method works very well in predicting drug structure, despite the fact that DP4 parameters were developed for natural products. The only failure is for simvastatin, where the large number of diastereomers and conformational flexibility prove to be too complex. The open source tools perform just slightly less effectively than the commercial packages, but are certainly a viable route for those with limited resources. The authors also provide a series of python scripts that allow users to create a seamless workflow; these should prove most helpful to the structure determination community.



1) Smith, S. G.; Goodman, J. M. "Assigning Stereochemistry to Single Diastereoisomers by GIAO
NMR Calculation: The DP4 Probability," J. Am. Chem. Soc. 2010, 132, 12946-12959, DOI: 10.1021/ja105035r.

2) Ermanis, K.; Parkes, K. E. B.; Agback, T.; Goodman, J. M. “Expanding DP4: application to drug compounds and automation,” Org. Biomol. Chem., 2016, 14, 3943-3949, DOI: 10.1039/c6ob00015k.


Simvastatin: InChI=1S/C25H38O5/c1-6-25(4,5)24(28)30-21-12-15(2)11-17-8-7-16(3)20(23(17)21)10-9-19-13-18(26)14-22(27)29-19/h7-8,11,15-16,18-21,23,26H,6,9-10,12-14H2,1-5H3/t15-,16-,18+,19+,20-,21-,23-/m0/s1

Next Page »