Archive for July, 2017

A few review articles

A few nice review/opinion pieces have been piling up in my folder of papers of interest for this Blog. So, this post provides a short summary of a number of review articles that computationally-oriented chemists may find of interest.

Holy Grails in computational chemistry

Houk and Liu present a short list of “Holy Grails” in computationally chemistry.1 They begin by pointing out a few technical innovations that must occur for the Grails to be found: development of a universal density functional; an accurate, generic force field; improved sampling for MD; and dealing with the combinatorial explosion with regards to conformations and configurations. Their list of Grails includes predicting crystal structures and structure of amorphous materials, catalyst design, reaction design, and device design. These Grails overlap with the challenges I laid out in my similarly-themed article in 2014.2

Post-transition state bifurcations and dynamics

Hare and Tantillo review the current understanding of post-transition state bifurcations (PTSB).3 This type of potential energy surface has been the subject of much of Chapter 8 of my book and many of my blog posts. What is becoming clear is the possibility of a transition state followed by a valley-ridge inflection leads to reaction dynamics where trajectories cross a single transition state but lead to two different products. This new review updates the state-of-the-art from Houk’s review4 of 2008 (see this post). Mentioned are a number of studies that I have included in this Blog, along with reactions involving metals, and biochemical systems (many of these examples come from the Tantillo lab). They close with the hope that their review might “inspire future studies aimed at controlling selectivity for reactions with PTSBs” (italics theirs). I might offer that controlling selectivity in these types of dynamical systems is another chemical Grail!

The Hase group has a long review of direct dynamics simulations.5 They describe a number of important dynamics studies that provide important new insight to reaction mechanism, such as bimolecular SN2 reactions (including the roundabout mechanism) and unimolecular dissociation. They write a long section on post-transition state bifurcations, and other dynamic effects that cannot be interpreted using transition state theory or RRKM. This section is a nice complement to the Tantillo review.

Benchmarking quantum chemical methods

Mata and Suhm look at our process of benchmarking computational methods.6 They point out the growing use of high-level quantum computations as the reference for benchmarking new methods, often with no mention of any comparison to experiment. In defense of theoreticians, they do note the paucity of useful experimental data that may exist for making suitable comparisons. They detail a long list of better practices that both experimentalists and theoreticians can take to bolster both efforts, leading to stronger computational tools that are more robust at helping to understand and discriminate difficult experimental findings.


1) Houk, K. N.; Liu, F., "Holy Grails for Computational Organic Chemistry and Biochemistry." Acc. Chem. Res. 2017, 50 (3), 539-543, DOI: 10.1021/acs.accounts.6b00532.

2) Bachrach, S. M., "Challenges in computational organic chemistry." WIRES: Comput. Mol. Sci. 2014, 4, 482-487, DOI: 10.1002/wcms.1185.

3) Hare, S. R.; Tantillo, D. J., "Post-transition state bifurcations gain momentum – current state of the field." Pure Appl. Chem. 2017, 89, 679-698, DOI: 0.1515/pac-2017-0104.

4) Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi-Ölçüm, N.; Houk, K. N., "Bifurcations on Potential Energy Surfaces of Organic Reactions." Angew. Chem. Int. Ed. 2008, 47, 7592-7601, DOI: 10.1002/anie.200800918

5) Pratihar, S.; Ma, X.; Homayoon, Z.; Barnes, G. L.; Hase, W. L., "Direct Chemical Dynamics Simulations." J. Am. Chem. Soc. 2017, 139, 3570-3590, DOI: 10.1021/jacs.6b12017.

6) Mata, R. A.; Suhm, M. A., "Benchmarking Quantum Chemical Methods: Are We Heading in the Right Direction?" Angew. Chem. Int. Ed. 2017, ASAP, DOI: 10.1002/anie.201611308.

Dynamics &Houk Steven Bachrach 25 Jul 2017 No Comments

Structure of GlyGly

Continuing their application of laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy and computational chemistry to biochemical molecules (see these previous posts), the Alonso group reports on the structure of the glycine-glycine dipeptide 1.1 The microwave spectrum shows three different conformers. MP2/6-311++G(d,p) computations, the same method they have previously utilized for predicting geometries, revealed a number of different conformations. By matching the spectroscopic parameters obtained from the spectrum with those of the computed structures, they proposed the three conformations 1a, 1b, and 1c, shown in Figure 1.




Figure 1. ωb97xd/6-31G(d) optimized structures of the three conformers of 1.
Note that the authors did not report their structures in their supporting materials(!) so I have optimized them.

The structures of conformers 1a and 1b are nearly planar. MP2 predicts a non-planar rotomer of 1a, which brings the carboxyl group out of plane, to be the lowest conformation in terms of electronic energy. With the M06-2x functional, this non-planar rotomer is about isoenergetic with 1a. With all computational levels 1a is the lowest in free energy. The barrier for rotation between the non-planar rotomer and 1a is very small, and this explains why it is not observed in the supersonic expansion.


1) Cabezas, C.; Varela, M.; Alonso, J. L., "The Structure of the Elusive Simplest Dipeptide Gly-Gly." Angew. Chem. Int. Ed. 2017, 56, 6420-6425, DOI: 10.1002/anie.201702425.


1: InChI=1S/C4H8N2O3/c5-1-3(7)6-2-4(8)9/h1-2,5H2,(H,6,7)(H,8,9)

amino acids Steven Bachrach 17 Jul 2017 1 Comment

Another procedure for computing NMR chemical shifts

Here’s another take on automating a procedure for using computer 13C chemical shifts to assess chemical structure.1 (Have a look at these previous posts for some alternative methods and applications.) The approach here is to benchmark a few computational methods against a conformationally flexible drug-like molecule, in this case 1. A variety of conformations were optimized using the different computational methods, and 13C chemical shifts evaluated from a Boltzmann-weighted distribution. While the best agreement with the experimental chemical shifts (based on the root-mean-squared deviation) is with ωB97XD/cc-pVDZ, the authors opt for B3LYP/cc-pVDZ for its computational efficiency with only slightly poorer performance. (It should be note that WC04/cc-pVDZ, a functional designed for computing 13 chemical shifts,2 is almost as good as ωB97XD/cc-pVDZ. Also, not mentioned in the article is the dramatically poorer performance of the pcS-2 basis set, despite the fact that it was parametrized3 for NMR computation!)

They apply the procedure to a number of test cases. For example, the HIV-1 reverse transcriptase inhibitor nevirapine hydrolyzes to a compound whose structure has been difficult to identify. The four proposed structures 2a-d were subjected to the computational method, and the 13C chemical shift RMSD for 2d is only 2.3ppm, significantly smaller than for the other 3 structures. Compound 2d was then synthesized and its NMR matches that of the nevirapine hydrolysis product.


1) Xin, D.; Sader, C. A.; Chaudhary, O.; Jones, P.-J.; Wagner, K.; Tautermann, C. S.; Yang, Z.; Busacca, C. A.; Saraceno, R. A.; Fandrick, K. R.; Gonnella, N. C.; Horspool, K.; Hansen, G.; Senanayake, C. H., "Development of a 13C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method." J. Org. Chem. 2017, ASAP, DOI: 10.1021/acs.joc.7b00321.

2) Wiitala, K. W.; Hoye, T. R.; Cramer, C. J., “Hybrid Density Functional Methods Empirically Optimized for the Computation of 13C and 1H Chemical Shifts in Chloroform Solution,” J. Chem. Theory Comput. 2006, 2, 1085-1092, DOI: 10.1021/ct6001016.

3) Jensen, F., “Basis Set Convergence of Nuclear Magnetic Shielding Constants Calculated by Density Functional Methods,” J. Chem. Theory Comput., 2008, 4, 719-727, DOI: 10.1021/ct800013z.


1: InChI=1S/C24H26F4N2O4S/c1-4-35(33,34)18-7-8-20-15(10-18)9-17(30-20)13-23(32,24(26,27)28)22(2,3)12-14-5-6-16(25)11-19(14)21(29)31/h5-11,30,32H,4,12-13H2,1-3H3,(H2,29,31)/t23-/m0/s1

2d: InChI=1S/C15H16N4O2/c1-9-6-8-17-14(18-10-4-5-10)12(9)19-13-11(15(20)21)3-2-7-16-13/h2-3,6-8,10H,4-5H2,1H3,(H,16,19)(H,17,18)(H,20,21)

NMR Steven Bachrach 10 Jul 2017 No Comments